题目内容
5.工人月工资y(元)依劳动生产率x(千元)变化的回归直线方程为${\;}_{y}^{∧}$=50+80x,下列判断正确的是( )| A. | 劳动生产率为1000元时,工资为50元 | |
| B. | 劳动生产率提高1000元时,工资提高130元 | |
| C. | 劳动生产率提高1000元时,工资提高80元 | |
| D. | 劳动生产率为1000元时,工资为80元 |
分析 根据所给的线性回归方程,劳动生产率为1千元时,工资约为130元;当x增加1时,y要增加80元,从而可得结论.
解答 解:∵回归直线方程为$\widehat{y}$=80x+50,
∴劳动生产率为1千元时,工资约为130元,故A,D错误;
当x增加1时,y要增加80元,
∴劳动生产率每提高1千元时,工资平均提高80元,故C正确,B错误;
故选:C.
点评 本题考查线性回归方程的应用,解题的关键是理解线性回归方程系数的含义.
练习册系列答案
相关题目
13.某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:
(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 指标 | 1号小白鼠 | 2号小白鼠 | 3号小白鼠 | 4号小白鼠 | 5号小白鼠 |
| A | 5 | 7 | 6 | 9 | 8 |
| B | 2 | 2 | 3 | 4 | 4 |
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
20.根据如下样本数据
得到的回归方程为${\;}_{y}^{∧}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$,则( )
| 3 | 4 | 5 | 6 | 7 | 8 | |
| y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 | -3.0 |
| A. | ${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$>0 | B. | ${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$<0 | C. | ${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$>0 | D. | ${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$<0 |
10.
某几何体的三视图如图所示,则其表面积为( )
| A. | 18 | B. | 22 | C. | 21 | D. | 32 |