题目内容

已知数列{an}的前n项和为Sn,且Sn=n2,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,n∈N*,求数列{bn}的前n项和Tn
(3)设An=(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
),n∈N*,试比较An
an+1
的大小,并证明你的结论.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)当n≥2时,an=Sn-Sn-1=2n-1,当n=1时,a1=S1=1,即可得出.
(2)bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂项求和”即可得出数列{bn}的前n项和Tn
(3)利用1+
1
an
=1+
1
2n-1
=
2n-1+2n+1
2(2n-1)
(2n-1)(2n+1)
2n-1
=
2n+1
2n-1
,即可得出An
an+1
解答: 解:(1)当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,a1=S1=1,上式也成立,
∴an=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴数列{bn}的前n项和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1

(3)∵1+
1
an
=1+
1
2n-1
=
2n
2n-1
=
2n-1+2n+1
2(2n-1)
(2n-1)(2n+1)
2n-1
=
2n+1
2n-1

∴An
3
1
×
5
3
×
7
5
×…×
2n+1
2n-1
=
2n+1
=
an+1

∴An
an+1
点评:本题考查了递推式的应用、“裂项求和”、不等式的性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网