题目内容

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 不喜欢 合计
大于40岁 20 5 25
20岁至40岁 10 20 30
合计 30 25 55
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:综合题,概率与统计
分析:(Ⅰ)计算K2的值,与临界值比较,即可得到结论;
(II)确定样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,利用列举法确定基本事件,即可求得结论.
解答: 解:(1)由公式K2=
55×(20×20-10×5)2
30×25×25×30
≈11.978>7.879,
所以有99.5%的把握认为喜欢“人文景观”景点与年龄有关                       …(5分)
(II)设所抽样本中有m个“大于40岁”市民,则
m
20
=
6
30
,得m=4人
所以样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,分别记作B1,B2,B3,B4,G1,G2
从中任选2人的基本事件有(B1,B2)、(B1,B3)、(B1,B4)、(B1,G1)、(B1,G2)、(B2,B3)、(B2,B4)、(B2,G1)、(B2,G2)、(B3,B4)、(B3,G1)、(B3,G2)、(B4,G1)、(B4,G2)、(G1,G2),共15个,…(9分)
其中恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的事件有(B1,G1)、(B1,G2)、(B2,G1)、(B2,G2)、(B3,G1)、(B3,G2)、(B4,G1)、(B4,G2),共8个,
所以恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的概率为P=
8
15
. …(12分)
点评:本题考查独立性检验,考查概率知识的运用,考查学生的计算能力,利用列举法确定基本事件是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网