题目内容

13.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$则f(2)=$\frac{1}{4}$.

分析 由2≥1,得f(2)=($\frac{1}{2}$)2,由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$,
∴f(2)=($\frac{1}{2}$)2=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网