题目内容
2.已知点P是抛物线y2=2x上的动点,定点Q(m,0),那么“m≤1“是“|PQ|的最小值为|m|”的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 设P$(\frac{{y}^{2}}{2},y)$,y∈R.|PQ|=$\sqrt{\frac{1}{4}[{y}^{2}-(2m-2)]^{2}+2m-1}$,对m分类讨论,利用二次函数的单调性即可得出.
解答 解:设P$(\frac{{y}^{2}}{2},y)$,y∈R.
|PQ|=$\sqrt{\frac{1}{4}[{y}^{2}-(2m-2)]^{2}+2m-1}$,
当m≤1时,y=0时,|PQ|的最小值为|m|;
当m>1时,y2=2(m-1)时,|PQ|的最小值为$\sqrt{2m-1}$.
∴那么“m≤1“是“|PQ|的最小值为|m|”的充要条件.
故选:C.
点评 本题考查了抛物线的标准方程及其性质、两点之间的距离公式、二次函数的单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.已知函数f(x)=$\left\{\begin{array}{l}\frac{1}{x}+1,0<x≤2\\ lnx,\;\;x>2\end{array}$,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是( )
| A. | (1,+∞) | B. | $[\frac{3}{2},+∞)$ | C. | $[{e^{\frac{3}{2}}},+∞)$ | D. | [ln2,+∞) |
10.某中学从高三男生中随机抽取100名学生的身高,将数据整理,得到的频率分布表如下所示.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | ① | 0.350 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |