ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$Ϊµ¥Î»ÏòÁ¿£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{a}$-$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |
·ÖÎö ÀûÓÃÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬ÒÔ¼°Á½¸öÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬ÇóµÃ$\overrightarrow{a}$Óë$\overrightarrow{a}$-$\overrightarrow{b}$µÄ¼Ð½ÇµÄÓàÏÒÖµ£¬¿ÉµÃ$\overrightarrow{a}$Óë$\overrightarrow{a}$-$\overrightarrow{b}$µÄ¼Ð½Ç£®
½â´ð ½â£º¡ßÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$Ϊµ¥Î»ÏòÁ¿£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬
Éè$\overrightarrow{a}$Óë$\overrightarrow{a}$-$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬¦È¡Ê[0£¬¦Ð]£¬
Ôòcos¦È=$\frac{\overrightarrow{a}•£¨\overrightarrow{a}-\overrightarrow{b}£©}{|\overrightarrow{a}|•|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{{\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}}{1•\sqrt{{£¨\overrightarrow{a}-\overrightarrow{b}£©}^{2}}}$
=$\frac{1-1•1•cos\frac{¦Ð}{3}}{\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}}$=$\frac{\frac{1}{2}}{\sqrt{1-2•1•1•cos\frac{¦Ð}{3}+1}}$=$\frac{1}{2}$£¬
¡à¦È=$\frac{¦Ð}{3}$£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓÃÊýÁ¿»ý±íʾÁ½¸öÁ½¸öÏòÁ¿µÄ¼Ð½Ç£¬Á½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬ÊôÓÚ»ù´¡Ì⣮
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬Íê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪһº¢»ò¶þº¢±¦±¦µÄ³öÉúÓëÒ½ÔºÓйأ¿
| Ò»º¢ | ¶þº¢ | ºÏ¼Æ | |
| ÈËÃñÒ½Ôº | |||
| ²©°®Ò½Ôº | |||
| ºÏ¼Æ |
¸½£º${K^2}=\frac{{n{{£¨{¦Áb-bc}£©}^2}}}{{£¨{¦Á+b}£©£¨{c+d}£©£¨{¦Á+c}£©£¨{b+d}£©}}$
| P£¨k2£¾k0£© | 0.4 | 0.25 | 0.15 | 0.10 |
| k0 | 0.708 | 1.323 | 2.072 | 2.706 |
| A£® | 136 | B£® | 134 | C£® | 268 | D£® | 266 |
| A£® | ¦Ð | B£® | $\frac{3¦Ð}{2}$ | C£® | 2¦Ð | D£® | 3¦Ð |