题目内容
8.| A. | 平面ABD⊥平面ABC | B. | 平面ACD⊥平面BCD | C. | 平面ABC⊥平面BCD | D. | 平面ACD⊥平面ABC |
分析 由题意推出CD⊥AB,AD⊥AB,从而得到AB⊥平面ADC,又AB?平面ABC,可得平面ABC⊥平面ADC.
解答 解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,
∴BD⊥CD,
又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,
故CD⊥平面ABD,则CD⊥AB,又AD⊥AB,
∴AB⊥平面ADC,
又AB?平面ABC,
∴平面ABC⊥平面ADC.
故选:D.
点评 本题考查平面与平面垂直的判定,考查逻辑思维能力,是中档题.
练习册系列答案
相关题目
19.《张丘建算经》是我国古代数学名著,书中有如下问题:“今有女不善织布,每天所织的布以同数递减,初日织五尺,末日织一尺,共织三十日,问共织几何?”其意思是:“一女子织布30天,每天所织布的数以相同的数递减,第一天织布5尺,最后一天织布1尺,则30天共织布多少尺?”那么该女子30天共织布( )
| A. | 70尺 | B. | 80尺 | C. | 90尺 | D. | 100尺 |
16.若变量x,y满足不等式组$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,且z=3x-y的最大值为7,则实数a的值为( )
| A. | 1 | B. | 7 | C. | -1 | D. | -7 |
13.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(x,$\frac{1}{2}$),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x为( )
| A. | -$\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{8}$ | D. | -$\frac{3}{8}$ |
17.已知f(x)=2sin2x+2sinxcosx,则f(x)的最小正周期和一个单调减区间分别为( )
| A. | 2π,[$\frac{3π}{8}$,$\frac{7π}{8}$] | B. | π,[$\frac{3π}{8}$,$\frac{7π}{8}$] | C. | 2π,[-$\frac{π}{8}$,$\frac{3π}{8}$] | D. | π,[-$\frac{π}{8}$,$\frac{3π}{8}$] |