题目内容
设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为 .
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出原函数的导函数,设出A,B的坐标,代入导函数,由函数在A,B处的导数等于0列式,换元后得到关于a的一元二次方程,结合线性规划知识求得a的取值范围.
解答:
解:由f(x)=ax+sinx+cosx,得
f′(x)=a+cosx-sinx,
设A(x1,y1),B(x2,y2),
则f′(x1)=a+cosx1-sinx1,f′(x2)=a+cosx2-sinx2.
由f′(x1)f′(x2)=-1,得
a2+[(cosx1-sinx1)+(cosx2-sinx2)]a+(cosx1-sinx1)(cosx2-sinx2)+1=0.
令m=cosx1-sinx1,n=cosx2-sinx2,
则m∈[-
,
],n∈[-
,
].
∴a2+(m+n)a+mn+1=0.
△=(m+n)2-4mn-4=(m-n)2-4,
∴0≤(m-n)2-4≤4,0≤
≤2.
当m-n=±2
时,m+n=0,
又a=
=
.
∴-1≤a≤1.
∴函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为[-1,1].
故答案为:[-1,1].
f′(x)=a+cosx-sinx,
设A(x1,y1),B(x2,y2),
则f′(x1)=a+cosx1-sinx1,f′(x2)=a+cosx2-sinx2.
由f′(x1)f′(x2)=-1,得
a2+[(cosx1-sinx1)+(cosx2-sinx2)]a+(cosx1-sinx1)(cosx2-sinx2)+1=0.
令m=cosx1-sinx1,n=cosx2-sinx2,
则m∈[-
| 2 |
| 2 |
| 2 |
| 2 |
∴a2+(m+n)a+mn+1=0.
△=(m+n)2-4mn-4=(m-n)2-4,
∴0≤(m-n)2-4≤4,0≤
| (m-n)2-4 |
当m-n=±2
| 2 |
又a=
-(m+n)±
| ||
| 2 |
-(m+n)±
| ||
| 2 |
∴-1≤a≤1.
∴函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为[-1,1].
故答案为:[-1,1].
点评:本题考查利用导数研究曲线上某点的切线方程,考查了数学转化思想方法,解答的关键在于由关于a的方程的根求解a的范围,是有一定难度题目.
练习册系列答案
相关题目
设实数x,y满足不等式组
,则
的取值范围是( )
|
| y |
| x+3 |
A、[0,
| ||||
B、[
| ||||
C、[0,
| ||||
D、[
|
执行所示的程序框图,如果输入a=3,那么输出的n的值为( )

| A、2 | B、3 | C、4 | D、5 |