题目内容

17.一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=$\frac{1}{x}$,f5(x)=sin($\frac{π}{2}$-x),f6(x)=xcosx.
(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.

分析 (Ⅰ)老远函数的奇偶性的定义先判定函数的奇偶性.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;可得基本事件总数.再利用古典概率计算公式即可得出.
(II)老远古典概率计算公式、相互独立事件的概率计算公式可得概率,分布列及其数学期望.

解答 解:(Ⅰ)f1(x)=x3为奇函数,f2(x)=5|x|,为偶函数,f3(x)=2为偶函数,f4(x)=$\frac{1}{x}$为奇函数,f5(x)=sin($\frac{π}{2}$-x)=cosx为偶函数,f6(x)=xcosx为奇函数.
所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;
另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为${∁}_{3}^{1}{∁}_{3}^{1}$+${∁}_{3}^{2}$=12.
满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为${∁}_{3}^{2}$.
故所求概率为P=$\frac{{∁}_{3}^{2}}{12}$=$\frac{1}{4}$.
(Ⅱ)ξ可取1,2,3,4. P(ξ=1)=$\frac{{∁}_{3}^{1}}{{∁}_{6}^{1}}$=$\frac{1}{2}$,P(ξ=2)=$\frac{{∁}_{3}^{1}}{{∁}_{6}^{1}}$•$\frac{{∁}_{3}^{1}}{{∁}_{5}^{1}}$=$\frac{3}{10}$,
P(ξ=3)=$\frac{{∁}_{3}^{1}}{{∁}_{6}^{1}}$•$\frac{{∁}_{2}^{1}}{{∁}_{5}^{1}}$•$\frac{{∁}_{3}^{1}}{{∁}_{4}^{1}}$=$\frac{3}{20}$,P(ξ=4)=$\frac{{∁}_{3}^{1}}{{∁}_{6}^{1}}$•$\frac{{∁}_{2}^{1}}{{∁}_{5}^{1}}$•$\frac{{∁}_{1}^{1}}{{∁}_{4}^{1}}$•$\frac{{∁}_{3}^{1}}{{∁}_{3}^{1}}$=$\frac{1}{20}$.
故ξ的分布列为

 ξ 1 2 3 4
 P $\frac{1}{2}$ $\frac{3}{10}$ $\frac{3}{20}$ $\frac{1}{20}$
Eξ=$1×\frac{1}{2}+2×\frac{3}{10}$+$3×\frac{3}{20}$+4×$\frac{1}{20}$=$\frac{7}{4}$.
∴ξ的数学期望为$\frac{7}{4}$.

点评 本题考查了相互独立事件的概率计算公式、随机变量的分布列及其数学期望计算公式、函数的奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网