题目内容

已知函数f(x)=2
3
sinxcosx-cos2x,x∈R.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,内角A、B、C所对边的长分别是a、b、c,若f(A)=2,C=
π
4
,c=2,求△ABC的面积S△ABC的值.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的图像与性质,解三角形
分析:(1)由二倍角公式化简可得f(x)=2sin(2x-
π
6
),令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈Z可解得函数f(x)的单调递增区间.
(2)由f(A)=2sin(2A-
π
6
)=2,可得A的值,由正弦定理可解得a=
6
,从而可求S△ABC的值.
解答: 解:(1)∵f(x)=2
3
sinxcosx-cos2x=
3
sin2x-cos2x=2sin(2x-
π
6
),
∴令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈Z可解得kπ-
π
6
≤x≤kπ+
π
3
,k∈Z,
即有函数f(x)的单调递增区间为:[kπ-
π
6
,kπ+
π
3
],k∈Z,
(2)∵f(A)=2sin(2A-
π
6
)=2,
∴2A-
π
6
=2kπ+
π
2
,k∈Z,即有A=kπ+
π
3
,k∈Z,
∵角A为△ABC中的内角,有0<A<π,
∴k=0时,A=
π
3
,B=π-A-C=
12

故由正弦定理可得:
2
2
2
=
a
3
2
,解得a=
6

∴S△ABC=
1
2
acsinB=
6
sin
12
=
3+
3
2
点评:本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网