题目内容

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,则|
AB
|=(  )
A、2
2
B、6
2
C、2
5
D、
5
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
OB
=(x,y),由于向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,利用模的计算公式、数量积运算即可得出.
解答: 解:设
OB
=(x,y),
∵向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,
12+(-3)2
=
x2+y2
,x-3y=0,
解得
x=3
y=1
x=-3
y=-1

OB
=(3,1)或(-3,-1).
AB
=
OB
-
OA
=(3,1)-(1,-3)=(2,4)或(-4,2).
|
AB
|
=
22+42
=2
5

故选:C.
点评:本题考查了模的计算公式、数量积运算,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网