题目内容
14.已知$\overrightarrow{a}$是单位向量,若$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=2,$\overrightarrow{b}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=4,则|$\overrightarrow{b}$|=$\sqrt{3}$.分析 根据向量数量积的公式,结合向量模长公式进行计算即可.
解答 解:∵$\overrightarrow{a}$是单位向量,若$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=2,$\overrightarrow{b}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=4,
∴$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=2,$\overrightarrow{b}$•$\overrightarrow{a}$+$\overrightarrow{b}$2=4,
即$\overrightarrow{a}$•$\overrightarrow{b}$=1,$\overrightarrow{b}$2=4-1=3,
则|$\overrightarrow{b}$|=$\sqrt{3}$,
故答案为:$\sqrt{3}$;
点评 本题主要考查向量模长的计算,根据向量数量积的公式是解决本题的关键.
练习册系列答案
相关题目
5.⊙A,⊙B,⊙C两两外切,半径分别为2,3,10,则△ABC的形状是( )
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 等腰三角形 |
9.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右焦点为F,过F作与x轴垂直的直线l与两条渐近线相交于A、B两点,P是直线l与双曲线的一个交点.设O为坐标原点.若有实数m、n,使得$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$,且$mn=\frac{2}{9}$,则该双曲线的离心率为( )
| A. | $\frac{{3\sqrt{2}}}{4}$ | B. | $\frac{9}{8}$ | C. | $\frac{{3\sqrt{5}}}{5}$ | D. | $\frac{{3\sqrt{2}}}{2}$ |
19.对于下列表格所示的五个散点,已知求得的线性回归直线方程为$\stackrel{∧}{y}$=0.8x-155.
则实数m的值为12.
| x | 197 | 198 | 201 | 204 | 205 |
| y | 1 | 3 | 6 | 7 | m |
6.已知集合$A=\left\{{x∈Z\left|{\frac{x+1}{x-3}≤0}\right.}\right\}$,B={y|y=x2+1,x∈A},则集合B的含有元素1的子集个数为( )
| A. | 5 | B. | 8 | C. | 4 | D. | 2 |
3.下表是某厂改造后产量x吨产品与相应生产能耗y(吨)的几组对照数据:
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.