题目内容

4.已知a,b,c分别为△ABC的三个内角A,B,C的对边,$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=$\sqrt{3}$,△ABC在BC边上的中线长为1,求△ABC的周长.

分析 (I)由$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$,利用正弦定理可得:$\frac{a-c}{b-c}$=$\frac{b}{a+c}$,化简再利用余弦定理即可得出.
(II)设∠ADB=α.在△ABD与△ACD中,由余弦定理可得:${c}^{2}=1+(\frac{\sqrt{3}}{2})^{2}$-$2×1×\frac{\sqrt{3}}{2}$cosα,b2=${1}^{2}+(\frac{\sqrt{3}}{2})^{2}$-$2×1×\frac{\sqrt{3}}{2}$×cos(π-α),可得b2+c2=$\frac{7}{2}$.又b2+c2-3=bc,联立解得b+c即可得出.

解答 解:(I)由$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$,利用正弦定理可得:$\frac{a-c}{b-c}$=$\frac{b}{a+c}$,化为:b2+c2-a2=bc.
由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,A∈(0,π).
∴A=$\frac{π}{3}$.
(II)设∠ADB=α.
在△ABD与△ACD中,由余弦定理可得:${c}^{2}=1+(\frac{\sqrt{3}}{2})^{2}$-$2×1×\frac{\sqrt{3}}{2}$cosα,
b2=${1}^{2}+(\frac{\sqrt{3}}{2})^{2}$-$2×1×\frac{\sqrt{3}}{2}$×cos(π-α),
∴b2+c2=2+$\frac{3}{2}$=$\frac{7}{2}$.
又b2+c2-3=bc,
联立解得b+c=2$\sqrt{2}$.
∴△ABC的周长为2$\sqrt{2}$+$\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网