ÌâÄ¿ÄÚÈÝ
9£®ÉèË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$ÓÒ½¹µãΪF£¬¹ýF×÷ÓëxÖá´¹Ö±µÄÖ±ÏßlÓëÁ½Ìõ½¥½üÏßÏཻÓÚA¡¢BÁ½µã£¬PÊÇÖ±ÏßlÓëË«ÇúÏßµÄÒ»¸ö½»µã£®ÉèOÎª×ø±êԵ㣮ÈôÓÐʵÊým¡¢n£¬Ê¹µÃ$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$£¬ÇÒ$mn=\frac{2}{9}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©| A£® | $\frac{{3\sqrt{2}}}{4}$ | B£® | $\frac{9}{8}$ | C£® | $\frac{{3\sqrt{5}}}{5}$ | D£® | $\frac{{3\sqrt{2}}}{2}$ |
·ÖÎö Çó³öA¡¢C×ø±ê£¬È»ºóÇó³öPµÄ×ø±ê£¬´úÈëË«ÇúÏß·½³Ì£¬ÀûÓÃ$mn=\frac{2}{9}$£¬¼´¿ÉÇó³öË«ÇúÏßµÄÀëÐÄÂÊ£®
½â´ð ½â£ºÓÉÌâÒâ¿É֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$ÓÒ½¹µãΪF£¨c£¬0£©£¬½¥½üÏß·½³Ìy=¡À$\frac{b}{a}$x£¬
ÔòA£¨c£¬$\frac{bc}{a}$£©£¬B£¨c£¬-$\frac{bc}{a}$£©£¬
$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$=£¨£¨m+n£©c£¬£¨m-n£©$\frac{bc}{a}$£©
´úÈë$\overrightarrow{OP}$=£¨£¨m+n£©c£¬£¨m-n£©$\frac{bc}{a}$£©£¬
µÃP£¨£¨m+n£©c£¬£¨m-n£©$\frac{bc}{a}$£©£¬´úÈëË«ÇúÏß·½³Ì$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$
µÃ$\frac{[£¨m+n£©c]^{2}}{{a}^{2}}$-$\frac{[£¨m-n£©\frac{bc}{a}]^{2}}{{b}^{2}}$=1£¬ÓÉe=$\frac{c}{a}$£¬ÕûÀíµÃ£º4e2mn=1£¬
ÓÉ$mn=\frac{2}{9}$£¬
¡àe=$\frac{3\sqrt{2}}{4}$£»
¹ÊÑ¡A£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߵĻù±¾ÐÔÖÊ£¬¿¼²éË«ÇúÏߵĽ¥½üÏß·½³Ì£¬ÀëÐÄÂʵÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | Èôl¡Î¦Á£¬¦Á¡É¦Â=m£¬Ôòl¡Îm | B£® | Èôl¡Í¦Á£¬l¡Î¦Â£¬Ôò¦Á¡Í¦Â | ||
| C£® | Èôl¡Îm£¬m?¦Á£¬Ôòl¡Î¦Á | D£® | Èôl¡Î¦Á£¬m¡Íl£¬Ôòm¡Í¦Á |
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | a |