题目内容
10.过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短的弦长为( )| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 3 | D. | 4 |
分析 由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.
解答 解:由圆的标准方程得圆心(2,2),半径r=2,
∵$\sqrt{({3-2)}^{2}+({1-2)}^{2}}$=$\sqrt{2}$<2,∴(3,1)在圆内,
∵圆心到此点的距离d=$\sqrt{2}$,r=2,
∴最短的弦长为2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{2}$.
故选:B.
点评 本题主要考查直线和圆相交的弦长的计算,涉及的知识有:圆的标准方程,点与圆的位置关系,垂径定理,以及勾股定理,找出最短弦是解本题的关键.
练习册系列答案
相关题目
11.“sinα=0”是“cosα=1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
19.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,P为椭圆C上的点,在△PF1F2中,点Q满足$\overrightarrow{{F}_{1}P}$=4$\overrightarrow{{F}_{1}Q}$,∠F1PF2=∠QF2F1,则椭圆C的离心率e的取值范围是( )
| A. | 0<e<$\frac{1}{5}$ | B. | $\frac{1}{5}$<e<$\frac{1}{3}$ | C. | $\frac{1}{3}$<e<1 | D. | 0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1 |
20.
某小学五年级一次考试中,五名同学的语文、英语成绩如表所示:
(1)请在下图的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的英语成绩高于90分的人数,求随机变量X不小于1的概率.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 语文(x分) | 89 | 91 | 93 | 95 | 97 |
| 英语(y分) | 87 | 89 | 89 | 92 | 93 |
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的英语成绩高于90分的人数,求随机变量X不小于1的概率.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.