题目内容
| AB |
| c |
| AC |
| b |
(1)用
| b |
| c |
| AM |
| BN |
| CP |
| CP |
(2)若直线l是BC的中垂线,O是l上一动点,求
| AO |
| BC |
考点:平面向量数量积的运算,向量的模
专题:平面向量及应用
分析:(1)利用向量的平行四边形法则、三角形的重心定理、数量积的性质即可得出;
(2)利用中垂线的性质可得
•
=0.再利用向量的三角形法则和数量积的性质可得
•
=(
+
)•
=
•
=-
(
+
)•(
-
),即可得出.
(2)利用中垂线的性质可得
| OM |
| BC |
| AO |
| BC |
| OM |
| MA |
| BC |
| MA |
| BC |
| 1 |
| 2 |
| AC |
| AB |
| AC |
| AB |
解答:
解:(1)设CP交AB于点D.
∵中线AM、BN交于点P,设
=
,
=
,
∴
=
(
+
)=
(
+
),
=
(
+
)=
(
+
-
)=
(-2
+
)=-
+
,
=
=
×
(
+
)=
(-
+
-
)=-
+
.
∵AB=2,AC=6,∠BAC=60°,
∴
2=(-
+
)2=
2+
2-
•
=
×62+
×22-
×6×2×cos60°
=
.
(2)∵OM⊥BC,∴
•
=0.
∵
=
+
,
=
-
.
∴
•
=(
+
)•
=
•
=-
(
+
)•(
-
)
=-
(
2-
2)
=-
(62-22)
=-16.
∵中线AM、BN交于点P,设
| AB |
| c |
| AC |
| b |
∴
| AM |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
| c |
| b |
| BN |
| 1 |
| 2 |
| BA |
| BC |
| 1 |
| 2 |
| BA |
| AC |
| AB |
| 1 |
| 2 |
| AB |
| AC |
| c |
| 1 |
| 2 |
| b |
| CP |
| 2 |
| 3 |
| CD |
| 2 |
| 3 |
| 1 |
| 2 |
| CA |
| CB |
| 1 |
| 3 |
| AC |
| AB |
| AC |
| 2 |
| 3 |
| b |
| 1 |
| 3 |
| c |
∵AB=2,AC=6,∠BAC=60°,
∴
| CP |
| 2 |
| 3 |
| b |
| 1 |
| 3 |
| c |
| 4 |
| 9 |
| b |
| 1 |
| 9 |
| c |
| 4 |
| 9 |
| b |
| c |
=
| 4 |
| 9 |
| 1 |
| 9 |
| 4 |
| 9 |
=
| 124 |
| 9 |
(2)∵OM⊥BC,∴
| OM |
| BC |
∵
| AO |
| OM |
| MA |
| BC |
| AC |
| AB |
∴
| AO |
| BC |
| OM |
| MA |
| BC |
=
| MA |
| BC |
=-
| 1 |
| 2 |
| AC |
| AB |
| AC |
| AB |
=-
| 1 |
| 2 |
| AC |
| AB |
=-
| 1 |
| 2 |
=-16.
点评:本题考查了向量的平行四边形法则、三角形的重心定理、数量积的性质、中垂线的性质、向量的三角形法则等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目
若0<b<a<1,则在ab,ba,aa,bb中最大值是( )
| A、ba |
| B、aa |
| C、ab |
| D、bb |