题目内容
已知函数f(x)=
x2+(a-1)x+3在区间(-∞,4]上单调递减,则a的取值范围( )
| 1 |
| 2 |
| A、[-3,+∞) |
| B、(-3,+∞) |
| C、(-∞,-3) |
| D、(-∞,-3] |
考点:二次函数的性质
专题:函数的性质及应用
分析:利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围.
解答:
解:由于二次函数的二次项系数大于0,
∴其对称轴左侧的图象下降,是减函数,
∴1-a≥4,
∴a≤-3.
故选:D.
∴其对称轴左侧的图象下降,是减函数,
∴1-a≥4,
∴a≤-3.
故选:D.
点评:本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目
已知2a+b=t(a>0,b>0),t为常数,若ab的最大值为2时,a2+b2=( )
| A、2 | B、3 | C、4 | D、5 |
某科室派出4名调研员到3个学校,调研高三复习备考近况,要求每个学校至少一名,则不同的分配方案的种数是( )
| A、144 | B、72 | C、36 | D、48 |
已知角α的终边经过点P(m,4),且cosα=-
,则m等于( )
| 3 |
| 5 |
A、-
| ||
| B、-3 | ||
C、
| ||
| D、3 |
“3a>3b”是“lna>lnb”的( )
| A、充分不必要条件 |
| B、既不充分也不必要条件 |
| C、充要条件 |
| D、必要不充分条件 |
已知等差数列{an},a2+a18=36,则a5+a6+…+a15=( )
| A、130 | B、198 |
| C、180 | D、156 |