题目内容

已知:如图,P是⊙O的直径AB延长线上的一点,割线PCD交⊙O于C、D两点,弦DF与直线AB垂直,H为垂足,CF与AB交于点E.
(1)求证:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半径等于2,求弦CF的长.
考点:与圆有关的比例线段
专题:
分析:(1)根据切割线定理,PD•PC=PA•PB,所以原题可转化为证明PO•PE=PD•PC,即证△DPO∽△EPC,从而找出比例线段,得到等积式;
(2)由图可知,CF=CE+EF,而由垂径定理可知DE=EF,所以只要求出DE和CE即可,欲求CE,可通过证明△DHO∽△DEC,运用比例线段进行求解,至于DE,则根据题中给出的已知条件可说明三角形DHE为等腰直角三角形,而DH和HE则可通过勾股定理求出,从而求出CF的值.
解答: (1)证明:连接OD.
∵AB是⊙O的直径,且DF⊥AB于D点H,
AD
=
AF
=
1
2
DF
.∴∠AOD=∠DCF.∴∠POD=∠PCE.
∵∠DPO=∠EPC,∴△DPO∽△EPC.
PD
PE
=
PO
PC
.即PO•PE=PD•PC.
又PD•PC=PA•PB,∴PA•PB=PO•PE.
(2)解:由(1)知:AB是弦DF的垂直平分线,
∴DE=EF.∴∠DEA=∠FEA.
∵DE⊥CF,∴∠DEA=∠FEA=45°.∴∠FEA=∠CEP=45°.
∵∠P=15°,∴∠AOD=60°.
在Rt△DHO中∵∠AOD=60°,OD=2,
∴OH=1,DH=
3

∵△DHE是等腰直角三角形,∴DE=
6

又∵∠AOD=∠DCF,∠DHO=∠DEC=90°,
∴△DHO∽△DEC.
DH
DE
=
HO
EC
,∴
3
6
=
1
EC
.∴EC=
2

∴CF=CE+EF=CE+DE=
2
+
6
点评:此题考查比较全面,相似三角形的判定和判定、勾股定理、以及垂径定理,难易程度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网