题目内容
17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率$e∈[{\sqrt{2},2}]$,则该双曲线的渐近线与实轴所成角的取值范围是$\frac{π}{4}$≤θ≤$\frac{π}{3}$.分析 设经过一、三象限的渐近线与实轴所成的角为θ,则tanθ=$\frac{b}{a}$,根据2≤$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$≤4,求出$\frac{b}{a}$的范围,即得tanθ的范围,从而得到θ 的范围.
解答 解:设经过一、三象限的渐近线与实轴所成的角为θ,则tanθ=$\frac{b}{a}$.
由题意可得2≤$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$≤4,
∴1≤$\frac{b}{a}$≤$\sqrt{3}$,即 1≤tanθ≤$\sqrt{3}$,∴$\frac{π}{4}$≤θ≤$\frac{π}{3}$,
故答案为:$\frac{π}{4}$≤θ≤$\frac{π}{3}$.
点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出1≤$\frac{b}{a}$≤$\sqrt{3}$,是解题的关键.
练习册系列答案
相关题目
5.设U=R,M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},则(∁UM)∩N=( )
| A. | (-∞,-3]∪(2,+∞) | B. | (-∞,-3)∪(0,+∞) | C. | (-∞,-3)∪(2,+∞) | D. | (-∞,0)∪(2,+∞) |
2.下列命题中正确的是( )
| A. | 若p∨q为真命题,则p∧q为真命题. | |
| B. | “x=5”是“x2-4x-5=0”的必要不充分条件. | |
| C. | 命题“?x∈R,x2+x-1<0”的否定为:“?x∈R,x2+x-1≥0”. | |
| D. | 命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题. |
6.设$\overrightarrow{a}$,$\overrightarrow{b}$,是任意的非零平面向量,且相互不共线,则下列正确的是( )
| A. | 若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$,$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$ | |
| B. | |$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$| | |
| C. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≥|$\overrightarrow{a}$||$\overrightarrow{b}$| | |
| D. | |$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$| |