ÌâÄ¿ÄÚÈÝ

9£®¸ø³öÏÂÁнáÂÛ£º
£¨1£©º¯Êýf£¨x£©=tanxÓÐÎÞÊý¸öÁãµã£»
£¨2£©¼¯ºÏA={x|y=2x+1}£¬¼¯ºÏ B={x|y=x2+x+1}ÔòA¡ÉB={£¨0£¬1£©£¬£¨1£¬3£©}£»
£¨3£©º¯Êý$f£¨x£©=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$µÄÖµÓòÊÇ[-1£¬1]£»
£¨4£©º¯Êý$f£¨x£©=2sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{¦Ð}{3}£¬0£©$£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=2cosx£¬Èô´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬Ôò|x1-x2|µÄ×îСֵΪ2¦Ð£®
ÆäÖнáÂÛÕýÈ·µÄÐòºÅÊÇ£¨1£©£¨4£©£¨°ÑÄãÈÏΪ½áÂÛÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£©£®

·ÖÎö £¨1£©Çó³öÕýÇк¯ÊýµÄÁãµãÅжϣ¨1£©£»
£¨2£©»¯¼òÁ½¼¯ºÏ²¢È¡½»¼¯Åжϣ¨2£©£»
£¨3£©Ð´³ö·Ö¶Îº¯ÊýÇóµÃÖµÓòÅжϣ¨3£©£»
£¨4£©Çó³öÈý½Çº¯ÊýµÄ¶Ô³ÆÖÐÐÄÅжϣ¨4£©£»
£¨5£©°ÑÒÑÖª´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢×ª»¯ÎªÇóº¯ÊýµÄÖÜÆÚÅжϣ¨5£©£®

½â´ð ½â£º£¨1£©ÓÉtanx=0£¬µÃx=k¦Ð£¬k¡ÊZ£¬¡àº¯Êýf£¨x£©=tanxÓÐÎÞÊý¸öÁãµã£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©¼¯ºÏA={x|y=2x+1}=R£¬¼¯ºÏ B={x|y=x2+x+1}=R£¬ÔòA¡ÉB=R£¬¹Ê£¨2£©´íÎó£»
£¨3£©º¯Êý$f£¨x£©=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$=$\left\{\begin{array}{l}{sinx£¬sinx¡Ý0}\\{0£¬sinx£¼0}\end{array}\right.$£¬ÆäÖµÓòÊÇ[0£¬1]£¬¹Ê£¨3£©´íÎó£»
£¨4£©ÓÉ2x+$\frac{¦Ð}{3}=k¦Ð$£¬µÃx=$\frac{k¦Ð}{2}-\frac{¦Ð}{6}$£¬k¡ÊZ£¬È¡k=1£¬µÃx=$\frac{¦Ð}{3}$£¬¡àº¯Êý$f£¨x£©=2sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{¦Ð}{3}£¬0£©$£¬¹Ê£¨4£©ÕýÈ·£»
£¨5£©¡ßº¯Êýf£¨x£©=2cosxµÄÖÜÆÚΪ2¦Ð£¬´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬ËµÃ÷|x1-x2|µÄ×îСֵΪ$\frac{1}{2}$ÖÜÆÚ=¦Ð£¬¹Ê£¨5£©´íÎó£®
¡àÕýÈ·µÄÃüÌâÊÇ£¨1£©£¬£¨4£©£®
¹Ê´ð°¸Îª£º£¨1£©£¨4£©£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿¼²é·ÖÎöÎÊÌâºÍÇó½âÎÊÌâµÄÄÜÁ¦£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø