题目内容

7.函数f(x)=ex(2x-1)-ax+a(a∈R),e为自然对数的底数.
(1)当a=1时,求函数f(x)的单调区间;
(2)若存在实数x∈(1,+∞),满足f(x)<0,求实数a的取值范围.

分析 (1)a=1时,f′(x)=ex(2x+1)-1,f′(0)=0,且函数f′(x)在R上单调递增,即可得出函数f(x)的单调性;
(2)由f(x)<0,则ex(2x-1)-ax+a<0,ex(2x-1)<a(x-1),由x>1,化为a>$\frac{{e}^{x}(2x-1)}{x-1}$,利用导数研究其单调性即可得出g(x)的最小值.

解答 解:(1)f′(x)=ex(2x+1)-a,
a=1时,f′(x)=ex(2x+1)-1,
f′(0)=0,且函数f′(x)在R上单调递增,
∴函数f(x)在(-∞,0)上单调递减;函数f(x)在(0,+∞)单调递增.
(2)由f(x)<0,则ex(2x-1)-ax+a<0,ex(2x-1)<a(x-1),
∵x>1,∴a>$\frac{{e}^{x}(2x-1)}{x-1}$,
令g(x)=$\frac{{e}^{x}(2x-1)}{x-1}$,则g′(x)=$\frac{{e}^{x}({2x}^{2}-3x)}{{(x-1)}^{2}}$,
∴函数g(x)在(1,$\frac{3}{2}$)上单调递减;在($\frac{3}{2}$,+∞)上单调递增.
∴当x=$\frac{3}{2}$时,函数g(x)取得极小值即最小值,g($\frac{3}{2}$)=4${e}^{\frac{3}{2}}$,
∴x>1时,a>4${e}^{\frac{3}{2}}$,
∴实数a的取值范围是(4${e}^{\frac{3}{2}}$,+∞).

点评 本题考查了利用导数研究函数的单调性极值与最值、等价转化方法、不等式的解法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网