题目内容

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点为F(-c,0)(c>0),过点F作圆${x^2}+{y^2}=\frac{a^2}{4}$的一条切线交圆于点E,交双曲线右支于点P,若$\overline{OP}=2\overline{OE}-\overline{OF}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.2

分析 判断出E为PF的中点,据双曲线的特点知原点O为两焦点的中点;利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF;通过勾股定理得到a,c的关系,求出双曲线的离心率.

解答 解:∵$\overline{OP}=2\overline{OE}-\overline{OF}$,则$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OF})$,∴E为PF的中点,令右焦点为F′,则O为FF′的中点,
则PF′=2OE=a,∵E为切点,∴OE⊥PF,
∴PF′⊥PF,∵PF-PF′=2a,∴PF=PF′+2a=3a,
在Rt△PFF′中,PF2+PF′2=FF′2,即9a2+a2=4c2
所以离心率e=$\frac{c}{a}=\frac{\sqrt{10}}{2}$.
故选:A.

点评 本小题主要考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a,b,c的关系,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网