题目内容

9.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{(-1)}^n}}}{S_n}$,且{bn}的前n项和为Tn,求证:当n≥2时,$\frac{1}{3}≤|{T_n}|≤\frac{7}{9}$.

分析 (Ⅰ)根据数列的递推公式得到数列{Sn}为以1为首项,以$\frac{3}{2}$为公比的等比数列,即可求出通项公式,再代值计算即可,
(Ⅱ)先求出bn,再根据前n项和公式得到|Tn|,利用放缩法即可证明.

解答 解:(Ⅰ)数列{an}满足Sn=2an+1,则Sn=2an+1=2(Sn+1-Sn),即3Sn=2Sn+1
∴$\frac{{{S_{n+1}}}}{S_n}=\frac{3}{2}$,
即数列{Sn}为以1为首项,以$\frac{3}{2}$为公比的等比数列,
∴Sn=($\frac{3}{2}$)n-1(n∈N*).
∴S1=1,S2=$\frac{3}{2}$;
(Ⅱ)在数列{bn}中,${b_n}=\frac{{{{(-1)}^n}}}{S_n}=-1×\frac{{{{(-1)}^{n-1}}}}{{{{(\frac{3}{2})}^{n-1}}}}$,
Tn为{bn}的前n项和,
则|Tn|=$|-1×\{1+(-\frac{2}{3})+\frac{4}{9}$$+[-{(\frac{2}{3})^3}]+…+\frac{{{{(-1)}^{n-1}}}}{{{{(&\frac{3}{2})}^{n-1}}}}\}|$|=$|1+(-\frac{2}{3})+\frac{4}{9}+$$[-{(\frac{2}{3})^3}]+…+\frac{{{{(-1)}^{n-1}}}}{{{{(\frac{3}{2})}^{n-1}}}}|$.
而当n≥2时,$1-\frac{2}{3}≤|1+(-\frac{2}{3})$$+\frac{4}{9}+[-{(\frac{2}{3})^3}]+…+$$\frac{{{{(-1)}^{n-1}}}}{{{{(\frac{3}{2})}^{n-1}}}}|≤|1+$$(-\frac{2}{3})+\frac{4}{9}|=\frac{7}{9}$,
即$\frac{1}{3}≤|{T_n}|≤\frac{7}{9}$.

点评 本题考查数列的通项及不等式的证明,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网