题目内容
18.已知x>0,则函数f(x)=7-x-$\frac{9}{x}$的最大值为1.分析 利用基本不等式的性质即可得出.
解答 解:∵x>0,则函数f(x)=7-x-$\frac{9}{x}$=7-$(x+\frac{9}{x})$≤7-$2\sqrt{x•\frac{9}{x}}$=1,当且仅当x=3时取等号.
故答案为:1.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
8.设集合M={x|y=$\sqrt{lo{g}_{\frac{1}{2}}x-1}$},N={x||x-$\frac{1}{2}$|≤$\frac{1}{4}$},则M∩N=( )
| A. | [2,+∞) | B. | [-1,$\frac{3}{4}$] | C. | [$\frac{1}{4}$,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{3}{4}$] |
9.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为( )
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $±\frac{1}{8}$ | D. | $\frac{1}{4}$ |
10.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界.若f(x)=x(1-2x)(0<x<$\frac{1}{2}$),则f(x)的上确界为( )
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |