题目内容
11.已知点M的坐标(x,y)满足不等式组$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,N为直线y=-2x+2上任一点,则|MN|的最小值是( )| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | 1 | D. | $\frac{\sqrt{17}}{2}$ |
分析 画出约束条件的可行域,利用已知条件,转化求解距离的最小值即可.
解答
解:点M的坐标(x,y)满足不等式组$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$的可行域如图:点M的坐标(x,y)满足不等式组$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,N为直线y=-2x+2上任一点,则|MN|的最小值,就是两条平行线y=-2x+2与2x+y-4=0之间的距离:d=$\frac{|-2+4|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故选:B.
点评 本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力.
练习册系列答案
相关题目
2.
如图,F1、F2分别是双曲线的左、右焦点,过F1的直线与双曲线的左、右两支分别相交于B、A两点,若△ABF2为等边三角形,则该双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{7}$ | D. | 3 |
19.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B,若△ABF2是以∠ABF2为顶点的等腰直角三角形,则双曲线的离心率的平方为( )
| A. | 5+2$\sqrt{2}$ | B. | 4+2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | 3+2$\sqrt{2}$ |
6.已知函数f(x)=ax-1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)-4的图象不过第二象限,则a的取值范围是( )
| A. | (2,+∞) | B. | (2,5] | C. | (1,2) | D. | (1,5] |
3.若函数f(2x+1)的定义域为(-1,0),则函数f(x)的定义域为( )
| A. | (-2,0) | B. | (-1,0) | C. | (-1,1) | D. | (0,1) |