题目内容

16.已知等比数列{an}的公比q>1,a1=1,且a1,2a2-1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设an•bn=$\frac{{3}^{n}}{{n}^{2}+n}$,求数列{bn}的前n项的和Tn

分析 (1)由a1,2a2-1,a3成等差数列.可得2(2a2-1)=a1+a3,4q-2=1+q2,q>1,解得q即可得出.
(2)an•bn=$\frac{{3}^{n}}{{n}^{2}+n}$,可得bn=$\frac{3}{n(n+1)}$=3$(\frac{1}{n}-\frac{1}{n+1})$.利用“裂项求和”方法即可得出.

解答 解:(1)∵a1,2a2-1,a3成等差数列.∴2(2a2-1)=a1+a3
∴4q-2=1+q2,q>1,解得q=3,又a1=1,
∴an=3n-1
(2)an•bn=$\frac{{3}^{n}}{{n}^{2}+n}$,∴bn=$\frac{3}{n(n+1)}$=3$(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{bn}的前n项的和Tn=3$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=3$(1-\frac{1}{n+1})$
=$\frac{3n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网