题目内容
2.已知数列{an}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{an}的通项公式
(Ⅱ)若数列{bn}满足an+1=($\frac{1}{2}$)${\;}^{{a}_{n}{b}_{n}}$,Tn为数列{bn}的前n项和,求Tn.
分析 (I)由2a1,a1+a2+2a3,a1+2a2成等差数列.可得2(a1+a2+2a3)=2a1+a1+2a2.即2(1+q+2q2)=3+2q,解得q即可得出.
(II)∵数列{bn}满足an+1=($\frac{1}{2}$)${\;}^{{a}_{n}{b}_{n}}$,代入可得bn=n•2n-1.再利用“错位相减法”与求和公式即可得出.
解答 解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.
∴2(a1+a2+2a3)=2a1+a1+2a2.
∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n-1}$.
(II)∵数列{bn}满足an+1=($\frac{1}{2}$)${\;}^{{a}_{n}{b}_{n}}$,∴$(\frac{1}{2})^{n}$=$(\frac{1}{2})^{(\frac{1}{2})^{n-1}{b}_{n}}$,
∴$(\frac{1}{2})^{n-1}$bn=n,∴bn=n•2n-1.
∴数列{bn}的前n项和Tn=1+2×2+3×22+…+n•2n-1.
2Tn=2+2×22+…+(n-1)•2n-1+n•2n,
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n,
∴Tn=(n-1)•2n+1.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.若f(x)=-$\frac{1}{2}$x2+mlnx在(1,+∞)是减函数,则m的取值范围是( )
| A. | [1,+∞) | B. | (1,+∞) | C. | (-∞,1] | D. | (-∞,1) |
11.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{f(x-1)+1,x≥0}\end{array}\right.$,f(2015)=( )
| A. | 2015 | B. | $\frac{4031}{2}$ | C. | 2016 | D. | $\frac{4033}{2}$ |