题目内容

7.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$则f(f(e))=2.

分析 先求出f(e)=-lne=-1,从而f(f(e))=f(-1),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$
∴f(e)=-lne=-1,
f(f(e))=f(-1)=($\frac{1}{2}$)-1=2.
故答案为:2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网