题目内容
18.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F作倾斜角为60°的直线l,直线l与双曲线交于A,与y轴交于点B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,则该双曲线的离心率等于( )| A. | $\sqrt{3}$+1 | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\frac{\sqrt{3}}{2}$+1 | D. | $\frac{\sqrt{3}-1}{4}$ |
分析 求出双曲线的左焦点,设出直线l的方程为y=$\sqrt{3}$(x+c),令x=0,可得B的坐标,由向量共线的坐标表示,可得A的坐标,代入双曲线方程,结合离心率公式及取值范围,计算即可得到双曲线的离心率.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F为(-c,0),
直线l的方程为y=$\sqrt{3}$(x+c),
令x=0,则y=$\sqrt{3}$c,
即B(0,$\sqrt{3}$c),设A(m,n),
由$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,可得(m+c,n)=$\frac{1}{2}$(c,$\sqrt{3}$c),
即有m=-$\frac{1}{2}$c,n=$\frac{\sqrt{3}}{2}$c.
即A(-$\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c),
代入双曲线方程,可得$\frac{1}{4}$•$\frac{{c}^{2}}{{a}^{2}}$-$\frac{3}{4}$•$\frac{{c}^{2}}{{b}^{2}}$=1,
由于e=$\frac{c}{a}$(e>1),则e2-3•$\frac{{e}^{2}}{{e}^{2}-1}$=4,
化简可得e4-8e2+4=0,
解得:e2=4±2$\sqrt{3}$,
由e>1,解得:e=$\sqrt{3}$+1,
故选A.
点评 本题考查双曲线的方程和性质,主要考查求曲线的离心率的问题,同时考查向量共线的坐标表示,属于中档题.
练习册系列答案
相关题目
16.下列命题中不正确的是( )
| A. | 如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ | |
| B. | 如果平面α⊥平面 β,那么平面α内一定存在直线平行于平面β | |
| C. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β | |
| D. | 如果平面α⊥平面 β,过α内任意一点作交线的垂线,那么此垂线必垂直于β |
13.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )
| A. | f(x)•g(x)是偶函数 | B. | f(x)+x2是奇函数 | C. | f(x)-sinx是奇函数 | D. | g(x)+2x是奇函数 |
10.已知定义在R上的函数满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为( )
| A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |