题目内容

18.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F作倾斜角为60°的直线l,直线l与双曲线交于A,与y轴交于点B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,则该双曲线的离心率等于(  )
A.$\sqrt{3}$+1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{3}}{2}$+1D.$\frac{\sqrt{3}-1}{4}$

分析 求出双曲线的左焦点,设出直线l的方程为y=$\sqrt{3}$(x+c),令x=0,可得B的坐标,由向量共线的坐标表示,可得A的坐标,代入双曲线方程,结合离心率公式及取值范围,计算即可得到双曲线的离心率.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F为(-c,0),
直线l的方程为y=$\sqrt{3}$(x+c),
令x=0,则y=$\sqrt{3}$c,
即B(0,$\sqrt{3}$c),设A(m,n),
由$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,可得(m+c,n)=$\frac{1}{2}$(c,$\sqrt{3}$c),
即有m=-$\frac{1}{2}$c,n=$\frac{\sqrt{3}}{2}$c.
即A(-$\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c),
代入双曲线方程,可得$\frac{1}{4}$•$\frac{{c}^{2}}{{a}^{2}}$-$\frac{3}{4}$•$\frac{{c}^{2}}{{b}^{2}}$=1,
由于e=$\frac{c}{a}$(e>1),则e2-3•$\frac{{e}^{2}}{{e}^{2}-1}$=4,
化简可得e4-8e2+4=0,
解得:e2=4±2$\sqrt{3}$,
由e>1,解得:e=$\sqrt{3}$+1,
故选A.

点评 本题考查双曲线的方程和性质,主要考查求曲线的离心率的问题,同时考查向量共线的坐标表示,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网