题目内容

12.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,且AC⊥FB.
(1)求证:平面EAC⊥平面FCB;
(2)若线段AC上存在点M,使AE∥平面FDM,求$\frac{AM}{MC}$的值.

分析 (1)推导出AC⊥BC,AC⊥FB,从而AC⊥平面FBC,由上能证明平面EAC⊥平面FCB.
(2)线段AC上存在点M,且M为AC中点时,连接CE与DF交于点N,连接MN.则EA∥MN.由此推导出线段AC上存在点M,且$\frac{AM}{MC}$=1,使得EA∥平面FDM成立.

解答 证明:(1)在△ABC中,
∵AC=$\sqrt{3}$,AB=2BC=2,
∴AC2+BC2=AB2
∴AC⊥BC.
又∵AC⊥FB,BF∩CB=B,
∴AC⊥平面FBC.
∵AC?平面平面EAC,
∴平面EAC⊥平面FCB.
(2)线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,
证明如下:
连接CE与DF交于点N,连接MN.
由 CDEF为正方形,得N为CE中点.
∴EA∥MN.
∵MN?平面FDM,EA?平面FDM,
∴EA∥平面FDM.
所以线段AC上存在点M,且$\frac{AM}{MC}$=1,使得EA∥平面FDM成立.

点评 本题考查面面垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网