ÌâÄ¿ÄÚÈÝ
2£®¶¨Ò壺ÉèA£¬BÊǷǿյÄÊý¼¯£¬a¡ÊA£¬b¡ÊB£¬ÈôaÊÇbµÄº¯ÊýÇÒbÒ²ÊÇaµÄº¯Êý£¬Ôò³ÆaÓëbÊÇ¡°ºÍг¹ØÏµ¡±£®ÈçµÈʽb=a2£¬a¡Ê[0£¬+¡Þ£©ÖÐaÓëbÊÇ¡°ºÍг¹ØÏµ¡±£¬ÔòÏÂÁеÈÖÐaÓëbÊÇ¡°ºÍг¹ØÏµ¡±µÄÊÇ£¨¡¡¡¡£©| A£® | $b=\frac{sina}{a}£¬a¡Ê£¨0£¬\frac{¦Ð}{2}£©$ | B£® | $b={a^3}+\frac{5}{2}{a^2}+2a+1£¬a¡Ê£¨-2£¬-\frac{2}{3}£©$ | ||
| C£® | £¨a-2£©2+b2=1£¬a¡Ê[1£¬2] | D£® | |a|+|b|=1£¬a¡Ê[-1£¬1] |
·ÖÎö Ö»ÒªÅжÏËù¸ø³öµÄº¯Êýµ¥µ÷¼´¿É£®
½â´ð ½â£ºA£®¡ß$a¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Ôòa£¾sina£¬¡àb¡ä=$\frac{acosa-sina}{{a}^{2}}$=$\frac{cosa£¨a-sina£©}{{a}^{2}}$£¾0£¬Òò´Ëº¯ÊýbÔÚ$a¡Ê£¨0£¬\frac{¦Ð}{2}£©$Éϵ¥µ÷µÝÔö£¬ÕýÈ·£»
B£®¡ßa¡Ê$£¨-2£¬-\frac{2}{3}£©$£¬b¡ä=3a2+5a+2=£¨3a+2£©£¨a+1£©£¬¡àa¡Ê£¨-2£¬-1£©Ê±µ¥µ÷µÝÔö£»a¡Ê£¨-1£¬-$\frac{2}{3}$£©Ê±µ¥µ÷µÝ¼õ£¬Òò´Ë²»·ûºÏÌâÒ⣻
C£®¡ß£¨a-2£©2+b2=1£¬a¡Ê[1£¬2]£¬¡àb=¡À$\sqrt{1-£¨a-2£©^{2}}$£¬b²»ÊÇaµÄº¯Êý£¬ÉáÈ¥£»
D£®¡ß|a|+|b|=1£¬a¡Ê[-1£¬1]£¬¡àb=¡À£¨1-|a|£©£¬b²»ÊÇaµÄº¯Êý£¬ÉáÈ¥£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁËÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢Ð¶¨Òå¡°ºÍгº¯Êý¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®
ijУΪÁ˽â¸ßÈýѧÉúÓ¢ÓïÌýÁ¦Çé¿ö£¬³é²éÁ˼ס¢ÒÒÁ½°à¸÷Ê®ÃûѧÉúµÄÒ»´ÎÓ¢ÓïÌýÁ¦³É¼¨£¬²¢½«ËùµÃÊý¾ÝÓþ¥Ò¶Í¼±íʾ£¨ÈçͼËùʾ£©£¬ÔòÒÔÏÂÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¼××éÊý¾ÝµÄÖÚÊýΪ28 | B£® | ¼××éÊý¾ÝµÄÖÐλÊýÊÇ22 | ||
| C£® | ÒÒ×éÊý¾ÝµÄ×î´óֵΪ30 | D£® | ÒÒ×éÊý¾ÝµÄ¼«²îΪ16 |
17£®Ä³¹«Ë¾ÎªÈ·¶¨ÏÂÒ»Äê¶ÈͶÈëijÖÖ²úÆ·µÄÐû´«·Ñ£¬ÐèÁ˽âÄêÐû´«·Ñx£¨µ¥Î»£ºÍòÔª£©¶ÔÄêÏúÊÛÁ¿y£¨µ¥Î»£º¶Ö£©µÄÓ°Ï죬Ϊ´Ë¶Ô½ü6ÄêµÄÄêÐû´«·Ñx£¨µ¥Î»£ºÍòÔª£©ºÍÄêÏúÊÛÁ¿y£¨µ¥Î»£º¶Ö£©µÄÊý¾Ý½øÐÐÕûÀí£¬µÃÈçÏÂͳ¼Æ±í£º
£¨¢ñ£©ÓɱíÖÐÊý¾ÝÇóµÃÏßÐԻع鷽³Ì$\hat y=\hat bx+\hat a$ÖеÄ$\hat b¡Ö0.6$£¬ÊÔÇó³ö$\hat a$µÄÖµ£»
£¨¢ò£©ÒÑÖªÕâÖÖ²úÆ·µÄÄêÀûÈóz£¨µ¥Î»£ºÍòÔª£©Óëx¡¢yÖ®¼äµÄ¹ØÏµÎªz=30y-x2£¬¸ù¾Ý£¨¢ñ£©ÖÐËùÇóµÄ»Ø¹é·½³Ì£¬ÇóÄêÐû´«·ÑxΪºÎֵʱ£¬ÄêÀûÈózµÄÔ¤¹ÀÖµ×î´ó£¿
| x£¨ÍòÔª£© | 2 | 3 | 4.5 | 5 | 7.5 | 8 |
| y£¨¶Ö£© | 3 | 3.5 | 3.5 | 4 | 6 | 7 |
£¨¢ò£©ÒÑÖªÕâÖÖ²úÆ·µÄÄêÀûÈóz£¨µ¥Î»£ºÍòÔª£©Óëx¡¢yÖ®¼äµÄ¹ØÏµÎªz=30y-x2£¬¸ù¾Ý£¨¢ñ£©ÖÐËùÇóµÄ»Ø¹é·½³Ì£¬ÇóÄêÐû´«·ÑxΪºÎֵʱ£¬ÄêÀûÈózµÄÔ¤¹ÀÖµ×î´ó£¿
7£®PM2.5ÊÇÖ¸¿ÕÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³Æ¿ÉÈë·Î¿ÅÁ£Î£®ÎªÁË̽¾¿³µÁ÷Á¿ÓëPM2.5µÄŨ¶ÈÊÇ·ñÏà¹Ø£¬Ïֲɼ¯µ½Ä³³ÇÊÐÖÜÒ»ÖÁÖÜÎåijһʱ¼ä¶Î³µÁ÷Á¿ÓëPM2.5µÃÊý¾ÝÈçÏÂ±í£º
£¨¢ñ£©¸ù¾ÝÉϱíÊý¾ÝÇó³öyÓëxµÄÏßÐԻعéÖ±Ïß·½³Ì$\hat y=\hat bx+\hat a$£¬
£¨¢ò£©ÈôÖÜÁùͬһʱ¼ä¶Î³µÁ÷Á¿ÊÇ25ÍòÁ¾£¬ÊÔ¸ù¾Ý£¨¢ñ£©ÖÐÇó³öµÄÏßÐԻع鷽³ÌÔ¤²â´ËʱPM2.5µÄŨ¶ÈÊǶàÉÙ£¿£¨±£ÁôÕûÊý£©
²Î¿¼¹«Ê½ÆäÖÐ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£º·½³Ì$\hat y=\hat bx+\hat a$£®
| ʱ¼ä | ÖÜÒ» | Öܶþ | ÖÜÈý | ÖÜËÄ | ÖÜÎå |
| ³µÁ÷Á¿x£¨ÍòÁ¾£© | 50 | 51 | 54 | 57 | 58 |
| PM2.5µÄŨ¶Èy£¨Î¢¿Ë/Á¢·½Ã×£© | 69 | 70 | 74 | 78 | 79 |
£¨¢ò£©ÈôÖÜÁùͬһʱ¼ä¶Î³µÁ÷Á¿ÊÇ25ÍòÁ¾£¬ÊÔ¸ù¾Ý£¨¢ñ£©ÖÐÇó³öµÄÏßÐԻع鷽³ÌÔ¤²â´ËʱPM2.5µÄŨ¶ÈÊǶàÉÙ£¿£¨±£ÁôÕûÊý£©
²Î¿¼¹«Ê½ÆäÖÐ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£º·½³Ì$\hat y=\hat bx+\hat a$£®
14£®ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ÃüÌâ¡°Èôx2-3x+2=0£¬Ôòx=1¡±µÄÄæ·ñÃüÌâΪ¡°Èôx¡Ù1£¬Ôòx2-3x+2¡Ù0¡± | |
| B£® | ÈôÃüÌâp£º¡°?x¡ÊR£¬x2-x-1£¾0¡±£¬ÔòÃüÌâpµÄ·ñ¶¨Îª¡°?x¡ÊR£¬x2-x-1¡Ü0¡± | |
| C£® | ¡°x=1¡±ÊÇ¡°x2+5x-6=0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ | |
| D£® | ¡°a=1¡±ÊÇ¡°Ö±Ïßx-ay=0ÓëÖ±Ïßx+ay=0»¥Îª´¹Ö±¡±µÄ³äÒªÌõ¼þ |
11£®Éèz£¨1+i£©=i£¬Ôò|z|=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | 2 |