题目内容
已知数列{an}中,a1=1,a2=a-1(a≠0且a≠1),其前n项和为Sn,且当n≥2时,
=
-
.
(1)求证:数列{Sn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a=4,令bn=
,记数列{bn}的前n项和为Tn,求Tn的表达式.
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
(1)求证:数列{Sn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a=4,令bn=
| 9an |
| (an+3)(an+1+3) |
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn2=Sn-1Sn+1(n≥2),由此能证明数列{Sn}是等比数列.
(2)由(Ⅰ)知Sn=an-1,由此能求出数列{an}的通项公式..
(3)当a=4,n≥2时,an=3×4n-2,此时bn=
-
,b1=
,由此能求出Tn.
(2)由(Ⅰ)知Sn=an-1,由此能求出数列{an}的通项公式..
(3)当a=4,n≥2时,an=3×4n-2,此时bn=
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
| 3 |
| 8 |
解答:
(1)证明:当n≥2时,
=
-
=
-
,
化简得Sn2=Sn-1Sn+1(n≥2),
又由S1=1≠0,S2=a≠0,得对一切正整数n均有Sn≠0,
∴数列{Sn}是等比数列.
(2)由(Ⅰ)知等比数列{Sn}的首项为1,公比为a,
∴Sn=an-1.
当n≥2时,an=Sn-Sn-1=(a-1)an-2,
又a1=S1=1,
∴an=
.
(3)当a=4,n≥2时,an=3×4n-2,
此时bn=
=
=
=
-
,
又b1=
=
,
∴bn=
,
T1=b1=
,
当n≥2时,
Tn=
+(
-
+
-
+…+
-
)
=
+
-
=
-
,
∴Tn=
.
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| Sn-Sn-1 |
| 1 |
| Sn+1-Sn |
化简得Sn2=Sn-1Sn+1(n≥2),
又由S1=1≠0,S2=a≠0,得对一切正整数n均有Sn≠0,
∴数列{Sn}是等比数列.
(2)由(Ⅰ)知等比数列{Sn}的首项为1,公比为a,
∴Sn=an-1.
当n≥2时,an=Sn-Sn-1=(a-1)an-2,
又a1=S1=1,
∴an=
|
(3)当a=4,n≥2时,an=3×4n-2,
此时bn=
| 9an |
| (an+3)(an+1+3) |
=
| 9×3×4n-2 |
| (3×4n-2+3)(3×4n-1+3) |
=
| 3×4n-2 |
| (4n-2+1)(4n-1+1) |
=
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
又b1=
| 9a1 |
| (a1+3)(a2+3) |
| 3 |
| 8 |
∴bn=
|
T1=b1=
| 3 |
| 8 |
当n≥2时,
Tn=
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 17 |
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
=
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4n-1+1 |
=
| 7 |
| 8 |
| 1 |
| 4n-1+1 |
∴Tn=
|
点评:本题考查数列是等比数列的证明,考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目