ÌâÄ¿ÄÚÈÝ
ÏÂÃæÓÐÎå¸öÃüÌâ
¢Ùº¯Êýf£¨x£©=sin4x-cos4xͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ(-
£¬0)£»
¢Úy=
µÄͼÏó¹ØÓڵ㣨-1£¬1£©¶Ô³Æ£¬
¢Û¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬Èô0£¼x1£¼1£¼x2£¼2£¬Ôò
µÄȡֵ·¶Î§ÊÇ£¨-
£¬-
£©
¢ÜÉèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
)ËùÓиùÖ®ºÍΪ8
¢Ý²»µÈʽsinx£¾
¶ÔÈÎÒâx¡Ê(0£¬
)ºã³ÉÁ¢£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ £®
¢Ùº¯Êýf£¨x£©=sin4x-cos4xͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ(-
| ¦Ð |
| 4 |
¢Úy=
| x+3 |
| x-1 |
¢Û¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬Èô0£¼x1£¼1£¼x2£¼2£¬Ôò
| b |
| a |
| 5 |
| 4 |
| 1 |
| 2 |
¢ÜÉèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
| x+3 |
| x+4 |
¢Ý²»µÈʽsinx£¾
| 4x2 |
| ¦Ð2 |
| ¦Ð |
| 2 |
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼ÆËãÌâ,ÔĶÁÐÍ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£ºÔËÓöþ±¶½ÇµÄÓàÏÒ¹«Ê½£¬»¯¼òf£¨x£©£¬ÔÙÓÉÓàÏÒº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£¬¼´¿ÉÅжϢ٣»
ÓÉ·´±ÈÀýº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÒÔ¼°Í¼ÏóÆ½ÒÆµÄ¹æÂÉ£¬¼´¿ÉÅжϢڣ»
Óɶþ´Î·½³Ìʵ¸ùµÄ·Ö²¼£¬½áºÏ¶þ´Îº¯ÊýµÄͼÏ󣬵õ½²»µÈʽ×飬»³ö¿ÉÐÐÓò£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÅжϢۣ»
ÔËÓÃżº¯ÊýµÄÐÔÖʺ͵¥µ÷ÐÔ£¬½áºÏΤ´ï¶¨Àí£¬¼´¿ÉÅжϢܣ»
ÔËÓÃÕýÏÒº¯ÊýºÍÅ×ÎïÏßµÄͼÏ󣬼´¿ÉÅжϢݣ®
ÓÉ·´±ÈÀýº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÒÔ¼°Í¼ÏóÆ½ÒÆµÄ¹æÂÉ£¬¼´¿ÉÅжϢڣ»
Óɶþ´Î·½³Ìʵ¸ùµÄ·Ö²¼£¬½áºÏ¶þ´Îº¯ÊýµÄͼÏ󣬵õ½²»µÈʽ×飬»³ö¿ÉÐÐÓò£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÅжϢۣ»
ÔËÓÃżº¯ÊýµÄÐÔÖʺ͵¥µ÷ÐÔ£¬½áºÏΤ´ï¶¨Àí£¬¼´¿ÉÅжϢܣ»
ÔËÓÃÕýÏÒº¯ÊýºÍÅ×ÎïÏßµÄͼÏ󣬼´¿ÉÅжϢݣ®
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬º¯Êýf£¨x£©=sin4x-cos4x=£¨sin2x-cos2x£©
£¨sin2x+cos2x£©=-cos2x£¬Áî2x=k¦Ð+
£¬¼´x=
+
£¬kΪÕûÊý£¬¼´¹ØÓÚ£¨
+
£¬0£©¶Ô³Æ£¬Ôò¢Ù¶Ô£»
¶ÔÓÚ¢Ú£¬y=
=1+
µÄͼÏó¿ÉÓÉy=
µÄͼÏóÏòÓÒÆ½ÒÆÒ»¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆÒ»¸öµ¥Î»µÃµ½£¬¹Ê¹ØÓÚ£¨1£¬1£©¶Ô³Æ£¬
Ôò¢Ú´í£»
¶ÔÓÚ¢Û£¬¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬
a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬
ÇÒ0£¼x1£¼1£¼x2£¼2£¬Ôò
¼´ÓÐ
£¬
×÷³ö²»µÈʽ×é±íʾµÄ¿ÉÐÐÓò£¬
=
±íʾµã£¨a£¬b£©ÓëÔµãµÄбÂÊ£¬
Ò×µÃA£¨-4£¬5£©£¬B£¨-2£¬1£©£¬C£¨-3£¬2£©£¬kOA=-
£¬kOB=-
£¬ÓÉͼÏó£¬
¿ÉÖª
µÄȡֵ·¶Î§ÊÇ£¨-
£¬-
£©£¬Ôò¢Û¶Ô£»
¶ÔÓڢܣ¬Éèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
)
¼´Îªf£¨|x|£©=f£¨|
|£©£¬ÔòÓÐx=
»òx+
=0£¬¼´ÓÐx2+3x-3=0»òx2+5x+3=0£¬
¼´ÓÐΤ´ï¶¨Àí¿ÉµÃ£¬x1+x2=-3£¬x3+x4=-5£¬ËùÓиùÖ®ºÍΪ-8£¬Ôò¢Ü´í£»
¶ÔÓڢݣ¬Áîy=sinx£¬y=
£¬Ôòx=0£¬y=0£¬x=
£¬y=1£¬ÓÉsinxÔÚ£¨0£¬
£©µÄͼÏóÉÏ͹£¬
y=
ΪÅ×ÎïÏßϰ¼£¬Ôò²»µÈʽsinx£¾
¶ÔÈÎÒâx¡Ê(0£¬
)ºã³ÉÁ¢£®Ôò¢Ý¶Ô£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý
£¨sin2x+cos2x£©=-cos2x£¬Áî2x=k¦Ð+
| ¦Ð |
| 2 |
| k¦Ð |
| 2 |
| ¦Ð |
| 4 |
| k¦Ð |
| 2 |
| ¦Ð |
| 4 |
¶ÔÓÚ¢Ú£¬y=
| x+3 |
| x-1 |
| 4 |
| x-1 |
| 4 |
| x |
Ôò¢Ú´í£»
¶ÔÓÚ¢Û£¬¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬
a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬
ÇÒ0£¼x1£¼1£¼x2£¼2£¬Ôò
|
|
×÷³ö²»µÈʽ×é±íʾµÄ¿ÉÐÐÓò£¬
| b |
| a |
| b-0 |
| a-0 |
Ò×µÃA£¨-4£¬5£©£¬B£¨-2£¬1£©£¬C£¨-3£¬2£©£¬kOA=-
| 5 |
| 4 |
| 1 |
| 2 |
¿ÉÖª
| b |
| a |
| 5 |
| 4 |
| 1 |
| 2 |
¶ÔÓڢܣ¬Éèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
| x+3 |
| x+4 |
¼´Îªf£¨|x|£©=f£¨|
| x+3 |
| x+4 |
| x+3 |
| x+4 |
| x+3 |
| x+4 |
¼´ÓÐΤ´ï¶¨Àí¿ÉµÃ£¬x1+x2=-3£¬x3+x4=-5£¬ËùÓиùÖ®ºÍΪ-8£¬Ôò¢Ü´í£»
¶ÔÓڢݣ¬Áîy=sinx£¬y=
| 4x2 |
| ¦Ð2 |
| ¦Ð |
| 2 |
| ¦Ð |
| 2 |
y=
| 4x2 |
| ¦Ð2 |
| 4x2 |
| ¦Ð2 |
| ¦Ð |
| 2 |
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄ¶Ô³ÆÐÔ¡¢¶þ´Î·½³Ìʵ¸ùµÄ·Ö²¼ºÍ²»µÈʽ±íʾµÄÆ½ÃæÇøÓò¡¢º¯ÊýµÄÆæÅ¼ÐÔºÍÔËÓã¬ÒÔ¼°²»µÈʽºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬¿¼²éÊýÐνáºÏµÄ˼Ïë·½·¨£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªm£¬n¡ÊR£¬Ôò¡°lnm£¼lnn¡±ÊÇ¡°em£¼en¡±µÄ£¨¡¡¡¡£©
| A¡¢±ØÒª²»³ä·ÖÌõ¼þ |
| B¡¢³ä·Ö²»±ØÒªÌõ¼þ |
| C¡¢³äÒªÌõ¼þ |
| D¡¢²»³ä·Ö²»±ØÒªÌõ¼þ |
ÏÂÁв»µÈʽÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢tan
| ||||
B¡¢sin
| ||||
C¡¢sin
| ||||
D¡¢cos
|
ÉèʵÊýxºÍyÂú×ãÔ¼ÊøÌõ¼þ
£¬ÇÒz=ax+yÈ¡µÃ×îСֵµÄ×îÓŽâ½öΪµãA£¨1£¬2£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
|
A¡¢(-¡Þ£¬-
| ||
B¡¢(-¡Þ£¬-
| ||
C¡¢(
| ||
D¡¢[
|
µ½Á½¶¨µãF1£¨-3£¬0£©¡¢F2£¨3£¬0£©µÄ¾àÀëÖ®²îµÄ¾ø¶ÔÖµµÈÓÚ6µÄµãMµÄ¹ì¼££¨¡¡¡¡£©
| A¡¢Á½ÌõÉäÏß | B¡¢Ïß¶Î |
| C¡¢Ë«ÇúÏß | D¡¢ÍÖÔ² |
ÏÂÁм¸ºÎÌåµÄÈýÊÓͼÊÇÒ»ÑùµÄΪ£¨¡¡¡¡£©
| A¡¢Ô²Ì¨ | B¡¢Ô²×¶ | C¡¢Ô²Öù | D¡¢Çò |