题目内容
已知函数f(x)=sin(x+
),α,β∈(0,
),且f(α)=
,f(β)=
,求f(α-β)= .
| π |
| 6 |
| π |
| 2 |
| 3 |
| 5 |
| 12 |
| 13 |
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:先根据已知条件判断出α+
和β+
的范围,进而根据平方关系分别求得cos(α+
)和cos(β+
)的值,最后利用两角和公式求得答案.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:
解:∵α,β∈(0,
),且f(α)=sin(α+
)=
<
,f(β)=sin(β+
)=
>
,
∴α+
<
,β+
>
,
∴cos(α+
)=
=
,cos(β+
)=-
=-
,
∴f(α-β)=sin(α+
-β-
)=sin(α+
)cos(β+
)-cos(α+
)sin(β+
)=
×(-
)-
×
=-
,
故答案为:-
.
| π |
| 2 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| π |
| 6 |
| 12 |
| 13 |
| ||
| 2 |
∴α+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴cos(α+
| π |
| 6 |
1-
|
| 4 |
| 5 |
| π |
| 6 |
1-sin2(β+
|
| 5 |
| 13 |
∴f(α-β)=sin(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 12 |
| 13 |
| 63 |
| 65 |
故答案为:-
| 63 |
| 65 |
点评:本题主要考查了两角和与差的正弦函数公式的应用,同角三角函数基本关系的应用.考查了学生的运算能力.
练习册系列答案
相关题目