题目内容
1.动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为x2+y2=4.分析 先设点P的坐标为(x,y),则可得|PO|,根据∠APB=60°可得∠AP0=30°,判断出|PO|=2|OB|,把|PO|代入整理后即可得到答案.
解答 解:设点P的坐标为(x,y),则|PO|=$\sqrt{{x}^{2}+{y}^{2}}$
∵∠APB=60°
∴∠AP0=30°
∴|PO|=2|OB|=2
∴$\sqrt{{x}^{2}+{y}^{2}}$=2
即x2+y2=4
故答案为:x2+y2=4
点评 本题主要考查了求轨迹方程的问题.属基础题.
练习册系列答案
相关题目
11.已知集合M={x|x2-3x-4≥0},N={x|-3≤x<3},则M∩N=( )
| A. | [-3,-1] | B. | [-1,3) | C. | (-∞,-4] | D. | (-∞,-4]∪[1,-3) |
16.“低碳生活,绿色出行”已成为普遍现象,某城市为了响应这一政策,节能减排,实施了一系列改革.为了了解改革的成效,现对1000名市民进行调查,得到如下统计表:
若从持支持态度的人中按分层抽样选取14人,再从14人中随机地选取3人去参加“改革建议座谈会”,则这3人中恰有1名是女性的概率为( )
| 持支持态度 | 持反对态度 | 持一般态度 | |
| 男性 | 500 | 150 | 50 |
| 女性 | 200 | 50 | 50 |
| A. | $\frac{42}{91}$ | B. | $\frac{45}{91}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
6.设锐角α终边上一点P的坐标是(3cosθ,sinθ),则函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |