ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬a2=$\frac{1}{2}$£¬ÇÒ[3+£¨-1£©n]an+2-2an+2[£¨-1£©n-1]=0£¬n¡ÊN*£¬¼ÇT2nΪÊýÁÐ{an}µÄǰ2nÏîºÍ£¬ÊýÁÐ{bn}ÊÇÊ×ÏîºÍ¹«±È¶¼ÊÇ2µÄµÈ±ÈÊýÁУ¬Ôòʹ²»µÈʽ£¨T2n+$\frac{1}{{b}_{n}}$£©•$\frac{1}{{b}_{n}}$£¼1³ÉÁ¢µÄ×îСÕûÊýnΪ£¨¡¡¡¡£©| A£® | 7 | B£® | 6 | C£® | 5 | D£® | 4 |
·ÖÎö ¸ù¾ÝÊýÁеĵÝÍÆ¹ØÏµÇó³öT2nÒÔ¼°ÊýÁÐ{bn}µÄͨÏʽ£¬È»ºó¸ù¾Ý²»µÈʽµÄÐÔÖʽøÐÐÇó½â¼´¿É£®
½â´ð
½â£º¡ß[3+£¨-1£©n]an+2-2an+2[£¨-1£©n-1]=0£¬
¡àµ±nΪżÊýʱ£¬¿ÉµÃ£¨3+1£©an+2-2an+2£¨1-1£©=0£¬¼´$\frac{{{a_{n+2}}}}{a_n}=\frac{1}{2}$£¬
¡àa2£¬a4£¬a6£¬¡ÊÇÒÔ${a_2}=\frac{1}{2}$ΪÊ×ÏÒÔ$\frac{1}{2}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
µ±nÎªÆæÊýʱ£¬¿ÉµÃ£¨3-1£©an+2-2an+2£¨-1-1£©=0£¬¼´an+2-an=2£¬
¡àa1£¬a3£¬a5£¬¡ÊÇÒÔa1=1ΪÊ×ÏÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡àT2n=£¨a1+a3+¡+a2n-1£©+£¨a2+a4+¡+a2n£©=$[n¡Á1+\frac{1}{2}n£¨n-1£©¡Á2]+\frac{{\frac{1}{2}[£¨1-{{£¨\frac{1}{2}£©}^n}]}}{{1-\frac{1}{2}}}$=${n^2}+1-\frac{1}{2^n}$£¬
¡ßÊýÁÐ{bn}ÊÇÊ×ÏîºÍ¹«±È¶¼ÊÇ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2•2n-1=2n£¬
Ôò£¨T2n+$\frac{1}{{b}_{n}}$£©•$\frac{1}{{b}_{n}}$£¼1µÈ¼ÛΪ£¨${n^2}+1-\frac{1}{2^n}$+$\frac{1}{{2}^{n}}$£©•$\frac{1}{{2}^{n}}$£¼1£¬
¼´£¨n2+1£©•$\frac{1}{{2}^{n}}$£¼1£¬¼´n2+1£¼2n£¬
×÷³öº¯Êýy=n2+1Óëy=2n£¬µÄͼÏóÈçͼ£º
Ôòµ±n=1ʱ£¬2=2£¬
µ±n=2ʱ£¬5£¼4²»³ÉÁ¢£¬
µ±n=3ʱ£¬10£¼8²»³ÉÁ¢£¬
µ±n=4ʱ£¬17£¼16²»³ÉÁ¢£¬
µ±n=5ʱ£¬26£¼32³ÉÁ¢£¬
µ±n¡Ý5ʱ£¬n2+1£¼2nºã³ÉÁ¢£¬
¹Êʹ²»µÈʽ£¨T2n+$\frac{1}{{b}_{n}}$£©•$\frac{1}{{b}_{n}}$£¼1³ÉÁ¢µÄ×îСÕûÊýnΪ5£¬
¹ÊÑ¡£ºC
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¸ù¾ÝÊýÁеĵÝÍÆ¹ØÏµÇó³öÊýÁеÄͨÏʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
| A£® | £¨-2£¬4£© | B£® | [-2£¬+¡Þ£© | C£® | £¨-¡Þ£¬4] | D£® | [-2£¬4] |
| A£® | -$\frac{¦Ð}{6}$ | B£® | -$\frac{¦Ð}{3}$ | C£® | -$\frac{¦Ð}{4}$ | D£® | -$\frac{3}{4}$¦Ð |
| A£® | $\frac{2}{3}$ | B£® | $\frac{\sqrt{5}}{3}$ | C£® | -$\frac{\sqrt{5}}{3}$ | D£® | ¡À$\frac{\sqrt{5}}{3}$ |
| A£® | 2 | B£® | 8 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{8}$ |