题目内容

设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2.
(1)求a2,a3的值; 
(2)证明:数列{an-an-1}为等差数列;
(3)数列{an}的通项公式;
(4)设Tn=
1
3a1
+
1
4a2
+
1
5a3
+…+
1
(n+2)an
,求证:Tn
1
4
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用递推式即可得出;
(2)an+2=2an+1-an+2,可得(an+2-an+1)-(an+1-an)=2,即可证明;
(3)利用等差数列的通项公式与“累加求和”即可得出;
(4)由(2)可知:
1
(n+2)an
=
1
(n+2)n(n+1)
=
1
2
[
1
n(n+1)
-
1
(n+1)(n+2)
]
,利用“裂项求和”即可得出.
解答: (1)解:∵a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2.
∴a2=2a1-a0+2=2×2-0+2=6,
a3=2a2-a1+2=2×6-2+2=12.
(2)证明:∵an+2=2an+1-an+2,
∴an+2-an+1=an+1-an+2,
化为(an+2-an+1)-(an+1-an)=2,
∴数列{an-an-1}为等差数列,且首项 a1-a0=2-0=2,公差为2.
(3)解:由(2)可得an-an-1=a1-a0+2(n-1)=2+2(n-1)═2n.
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+4+6+…++2n=
n(2+2n)
2
=n(n+1).
(4)证明:由(2)可知:
1
(n+2)an
=
1
(n+2)n(n+1)
=
1
2
[
1
n(n+1)
-
1
(n+1)(n+2)
]

∴Tn=
1
3a1
+
1
4a2
+
1
5a3
+…+
1
(n+2)an
=
1
2
[(
1
1×2
-
1
2×3
)+(
1
2×3
-
1
3×4
)
+…+(
1
n(n+1)
-
1
(n+1)(n+2)
)]

=
1
2
[
1
1×2
-
1
(n+1)(n+2)
]
=
1
4
-
1
2(n+1)(n+2)
1
4

∴Tn
1
4
点评:本题考查了等差数列的通项公式及其前n项和公式、“累加求和”、“裂项求和”,考查了变形能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网