题目内容
6.已知函数f(x)=|x-1|+|x+1|-2.(1)求不等式f(x)≥1的解集;
(2)若关于x的不等式f(x)≥a2-a-2在R上恒成立,求实数a的取值范围.
分析 (1)分类讨论,去掉绝对值,即可求不等式f(x)≥3的解集;
(2)f(x)=|x-1|+|x+1|-2≥|(x-1)-(x+1)|-2=0,利用关于x的不等式f(x)≥a2-a-2在R上恒成立,即可求实数a的取值范围.
解答 解:(1)原不等式等价于$\left\{\begin{array}{l}x≤-1\\-2x≥3\end{array}\right.$或$\left\{\begin{array}{l}-1<x≤1\\ 2≥3\end{array}\right.$或$\left\{\begin{array}{l}x>1\\ 2x≥3\end{array}\right.$
解得:$x≤-\frac{3}{2}$或$x≥\frac{3}{2}$,∴不等式的解集为$\left\{{\left.x\right|x≤-\frac{3}{2}}\right.$或$\left.{x≥\frac{3}{2}}\right\}$.
(2)∵f(x)=|x-1|+|x+1|-2≥|(x-1)-(x+1)|-2=0,
且f(x)≥a2-a-2在R上恒成立,∴a2-a-2≤0,解得-1≤a≤2,
∴实数a的取值范围是-1≤a≤2.
点评 本题主要考查绝对值不等式的解法,考查恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目
14.对某地区儿童的身高与体重的一组数据,我们用两种模型①y=bx+a,②y=cedx拟合,得到回归方程分别为${\widehaty^{(1)}}=0.24x-8.81$,${\widehaty^{(2)}}=1.70{e^{0.022x}}$,作残差分析,如表:
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于1kg的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据(x1,y1),(x2,y2),…(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘法估计分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| 身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 |
| 体重y(kg) | 6 | 8 | 10 | 14 | 15 | 18 |
| ${\widehate^{(1)}}$ | 0.41 | 0.01 | 1.21 | -0.19 | 0.41 | |
| ${\widehate^{(2)}}$ | -0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于1kg的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据(x1,y1),(x2,y2),…(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘法估计分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
15.已知函数$f(x)=\left\{\begin{array}{l}x+1,0≤x≤1\\ \frac{1}{2}sin({\frac{π}{4}x})+\frac{3}{2},1<x≤4\end{array}\right.$,若不等式f2(x)-af(x)+2<0在x∈[0,4]上恒成立,则实数a取值范围是( )
| A. | $a>2\sqrt{2}$ | B. | $2\sqrt{2}<a<3$ | C. | a>3 | D. | $3<a<2\sqrt{3}$ |
16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则下列关系可以成立的而是( )
| A. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$ | B. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$) | C. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$ | D. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$ |