ÌâÄ¿ÄÚÈÝ

13£®Èô$\overrightarrow a$¡¢$\overrightarrow b$ÊÇÁ½¸ö²»¹²ÏߵķÇÁãÏòÁ¿£¬
£¨1£©Èô$\overrightarrow a$Óë$\overrightarrow b$ÆðµãÏàͬ£¬ÔòʵÊýtΪºÎֵʱ£¬$\overrightarrow{a}$¡¢t$\overrightarrow b$¡¢$\frac{1}{3}$$£¨\overrightarrow a+\vec b£©$Èý¸öÏòÁ¿µÄÖÕµãA£¬B£¬CÔÚÒ»Ö±ÏßÉÏ£¿
£¨2£©Èô|$\overrightarrow a$|=|$\overrightarrow b$|£¬ÇÒ$\overrightarrow a$Óë$\overrightarrow b$¼Ð½ÇΪ60¡ã£¬ÔòʵÊýtΪºÎֵʱ£¬|$\overrightarrow a-t\overrightarrow b$|µÄÖµ×îС£¿

·ÖÎö £¨1£©ÓÉÈýµãA£¬B£¬C¹²Ïߣ¬±Ø´æÔÚÒ»¸ö³£ÊýtʹµÃ$\overrightarrow{AB}=¦Ë\overrightarrow{AC}$£¬Óɴ˵Èʽ½¨Á¢Æð¹ØÓڦˣ¬tµÄ·½³ÌÇó³ötµÄÖµ£»
£¨2£©ÓÉÌâÉèÌõ¼þ£¬¿ÉÒÔ°Ñ|$\overrightarrow a-t\overrightarrow b$|µÄƽ·½±íʾ³É¹ØÓÚʵÊýtµÄº¯Êý£¬¸ù¾ÝËùµÃµÄº¯ÊýÅжϳöËüÈ¡³ö×îСֵʱµÄxµÄÖµ£®

½â´ð ½â£º£¨1£©$\overrightarrow{AB}=t\vec b-\vec a$£¬$\overrightarrow{AC}=\frac{1}{3}\vec b-\frac{2}{3}\vec a$£¬
¡ß$\overrightarrow{AB}¡Î\overrightarrow{AC}$£¬¼´$\overrightarrow{AB}=¦Ë\overrightarrow{AC}$
¡à$t\vec b-\vec a=¦Ë£¨{\frac{1}{3}\vec b-\frac{2}{3}\vec a}£©$£¬¿ÉµÃ$\begin{array}{l}\left\{\begin{array}{l}t=\frac{1}{3}¦Ë\\-1=-\frac{2}{3}¦Ë\end{array}\right.\end{array}$¡à$t=\frac{1}{2}$£»
¹Ê´æÔÚt=$\frac{1}{2}$ʱ£¬A¡¢B¡¢CÈýµã¹²Ïߣ»
£¨2£©Éè|$\overrightarrow a$|=|$\overrightarrow b$|=k
|$\overrightarrow a-t\overrightarrow b$|2=|$\overrightarrow a$|2+t2|$\overrightarrow b$|2-2t|$\overrightarrow a$||$\overrightarrow b$|cos60¡ã=k2£¨t2-t+1£©=k2£¨t-$\frac{1}{2}$£©2+$\frac{3}{4}$£¬
¡à$t=\frac{1}{2}$ʱ£¬|$\overrightarrow a-t\overrightarrow b$|µÄÖµ×îС£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄ×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬ÏòÁ¿µÄÄ£µÄ×ø±ê±íʾ£®£®±¾Ìâ°ÑÈýµã¹²Ïßת»¯ÎªÁËÏòÁ¿¹²Ïߣ¬½«Ä£µÄ×îСֵÇó²ÎÊýµÄÎÊÌâת»¯ÎªÇóº¯ÊýµÄ×îСֵ£¬½âÌâʱҪעÒâÇ¡µ±µØÔËÓÃת»¯¡¢»¯¹éÕâÒ»Êýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø