题目内容
13.执行如图所示的程序框图,则输出s的值等于( )| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 0 | D. | 1 |
分析 根据程序框图,进行模拟计算即可.
解答 解:由程序框图得s=cos$\frac{6π}{3}$+cos$\frac{5π}{3}$+cos$\frac{4π}{3}$+cosπ+cos$\frac{2π}{3}$+cos$\frac{π}{3}$+cos0=1+$\frac{1}{2}$-$\frac{1}{2}$-1-$\frac{1}{2}$$+\frac{1}{2}$+1=1,
故选:D
点评 本题主要考查程序框图的应用,根据条件得到S的计算式子是解决本题的关键.
练习册系列答案
相关题目
1.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f'(x)>0,则对任意实数a,b( )
| A. | a>b?eaf(b)>ebf(a) | B. | a>b?eaf(b)<ebf(a) | C. | a>b?eaf(a)<ebf(b) | D. | a>b?eaf(a)>ebf(b) |
8.有甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下2×2列联表:(单位:人).
已知在全部105人中随机抽取1人成绩是优秀的概率为$\frac{2}{7}$,
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 总计 | 105 |
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 6.635 |
5.已知$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}({x+1}),x<0}\\{-{x^2}+x,x≥0}\end{array}}\right.$,则关于x的方程f(x)=m(m∈R)恰有三个不同的实数根a,b,c,则abc的取值范围是( )
| A. | $({-\frac{1}{16},0})$ | B. | $({-\frac{1}{4},0})$ | C. | $({-\frac{1}{8},0})$ | D. | $({-\frac{1}{2},0})$ |