题目内容

已知函数y=xf′(x)的图象如图所示,下面四个图象中y=f(x)的图象大致是(  )
A、
B、
C、
D、
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:根据函数y=xf′(x)的图象,依次判断f(x)在区间(-∞,-1),(-1,0),(0,1),(1,+∞)上的单调性即可
解答: 解:由函数y=xf′(x)的图象可知:
当x<-1时,xf′(x)<0,f′(x)>0,此时f(x)增
当-1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减
当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减
当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.
故选C.
点评:本题间接利用导数研究函数的单调性,考查函数的图象问题.本题有一定的代表性,是一道好题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网