题目内容

14.根据如表样本数据
x3456
y2.5t44.5
得到回归方程y=0.7x+0.35,则t=(  )
A.2.6B.2.8C.2.9D.3

分析 根据已知表中数据,可计算出数据中心点($\overline{x}$,$\overline{y}$)的坐标,根据数据中心点一定在回归直线上,将($\overline{x}$,$\overline{y}$)的坐标代入回归直线方程y=0.7x+0.35,解方程可得m的值.

解答 解:由已知中的数据可得:$\overline{x}$=(3+4+5+6)÷4=4.5,$\overline{y}$=(2.5+t+4+4.5)÷4=$\frac{11+t}{4}$,
∵数据中心点($\overline{x}$,$\overline{y}$)一定在回归直线上,
∴$\frac{11+t}{4}$=0.7×4.5+0.35,
解得t=3,
故选:D.

点评 本题考查的知识点是线性回归方程,其中数据中心点($\overline{x}$,$\overline{y}$)一定在回归直线上是解答本题的关键.

练习册系列答案
相关题目
19.为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽取8位,他们的数学、物理、化学分数(折算成百分制)事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
化学分数z6772768084879092
(1)若规定80分以上为优秀,请填写如下2×2列联表,问是否有90%的把握认为是否优秀与科目有关;
  优秀 不优秀 合计
 数学   
 物理   
 合计   
(2)用变量y与x,z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x,z与x的线性回归方程(系数精确到0,01),当某位同学的数学成绩为50分时,估计其物理、化学两科的成绩.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,
回归直线方程是:$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\overline{z}$=81,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈456,$\sum_{i=1}^{8}$(zi-$\overline{z}$)2≈550,≈688,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(zi-$\overline{z}$)≈755,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网