题目内容

已知关于x的一元二次方程f(x)=ax2-4bx+1
(1)设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P,Q中随机取一个数为a和b,求函数y=f(x)在[1,+∞)上是增函数的概率
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,设A={f(1)<0},求事件A发生的概率.
考点:几何概型
专题:概率与统计
分析:(Ⅰ)根据古典概率的概率公式进行计算即可求出概率.
(Ⅱ)根据几何概型的概率公式进行计算即可.
解答: 解(Ⅰ)∵函数f(x)=ax2-4bx+1的图象的对称轴为x=
2b
a

要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
当且仅当a>0且x=
2b
a
≤1,
即2b≤a.
若a=1,则b=-1;
若a=2,则b=-1,1;
若a=3,则b=-1,1,
∴事件包含基本事件的个数是1+2+2=5
∴所求事件的概率为
5
15
=
1
3

(Ⅱ)由(1)知当且仅当2b≤a.且a>0时,
函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
依条件可知试验的全部结果所构成的区域为{(a,b)|
a+b-8≤0
a>0
b>0
}
构成所求事件的区域为三角形部分对应的面积S=
1
2
×8×8=32

事件A满足{(a,b)|
a+b-8≤0
a>0,b>0
f(1)<0
}={(a,b)|
a+b-8≤0
a>0,b>0
a-4b+1<0
},
a+b-8=0
a-4b+1=0
,解得a=
31
5
,b=
9
5
,即交点坐标(
31
5
9
5
),
则对应三角形的面积S=
1
2
×(8-
1
4
31
5
=
961
40

则所求事件的概率为P=
961
40
32
=
961
1280
点评:本题只要考查概率的求法,要求熟练掌握古典概型和几何概型的概率公式,注意它们之间的联系和区别.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网