题目内容
19.设数列{an}的前n项和为Sn,且满足a1=1,Sn=an+1+2n+1+1(n∈N*),则数列{an}的通项公式an=$\left\{\begin{array}{l}{1,n=1}\\{-n•{2}^{n-1},n≥2}\end{array}\right.$.分析 由题意可得$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{1}{2}$,从而可得$\frac{{a}_{n+2}}{{2}^{n+2}}$-$\frac{{a}_{n+1}}{{2}^{n+1}}$=-$\frac{1}{2}$;从而证明{$\frac{{a}_{n}}{{2}^{n}}$}从第二项起成等差数列,从而求得$\frac{{a}_{n}}{{2}^{n}}$=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{-\frac{1}{2}n,n≥2}\end{array}\right.$,从而解得.
解答 解:∵Sn=an+1+2n+1+1,
∴Sn+1=an+2+2n+2+1,
两式相减可得,
an+1=an+2-an+1+2n+1,
故2an+1=an+2+2n+1,
故$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{1}{2}$,
故$\frac{{a}_{n+2}}{{2}^{n+2}}$-$\frac{{a}_{n+1}}{{2}^{n+1}}$=-$\frac{1}{2}$;
∵a1=1,
∴a2=1-5=-4,a3=-3-9=-12,
∴$\frac{{a}_{1}}{2}$=$\frac{1}{2}$,$\frac{{a}_{2}}{4}$=-1,$\frac{{a}_{3}}{8}$=-$\frac{3}{2}$;
故{$\frac{{a}_{n}}{{2}^{n}}$}从第二项起成等差数列,
故$\frac{{a}_{n}}{{2}^{n}}$=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{-\frac{1}{2}n,n≥2}\end{array}\right.$,
故an=$\left\{\begin{array}{l}{1,n=1}\\{-n•{2}^{n-1},n≥2}\end{array}\right.$;
故答案为:$\left\{\begin{array}{l}{1,n=1}\\{-n•{2}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了数列的前n项和与通项公式的应用及分类讨论的思想应用.
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{2}$ |
| A. | y=$\sqrt{x^2}$ | B. | y=$\frac{x^2}{x}$ | C. | $y={a^{{{log}_a}x}}$ | D. | y=logaax |
| x | $\frac{π}{2}$ | 2π | $\frac{7π}{2}$ | 5π | $\frac{13π}{2}$ |
| y | 0 | 2 | 0 | -2 | 0 |
(2)设g(x)=Acos(ωx+φ),若关于x的方程g(x)+λ=0在[π,7π]内恰有两个不同的解α,β,求实数λ的取值范围,并求α+β的值.
| A. | 25π | B. | $\frac{29π}{4}$ | C. | 116π | D. | 29π |
| A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | ±4$\sqrt{3}$ | D. | $\sqrt{3}$ |