题目内容
9.设α∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=-$\frac{\sqrt{3}}{3}$,求sin2α及cos(α+$\frac{π}{4}$)的值.分析 根据同角的平方关系求出cosα的值,再利用二倍角公式求出sin2α的值,由两角和与差的余弦来求cos(α+$\frac{π}{4}$)的值.
解答 解:∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=-$\frac{\sqrt{3}}{3}$,
∴cosα=$\frac{\sqrt{6}}{3}$,
∴sin2α=2sinαcosα=2×(-$\frac{\sqrt{3}}{3}$)×$\frac{\sqrt{6}}{3}$=-$\frac{2\sqrt{2}}{3}$,cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$\frac{\sqrt{6}}{3}$×$\frac{\sqrt{2}}{2}$-(-$\frac{\sqrt{3}}{3}$)×$\frac{\sqrt{2}}{2}$=$\frac{2\sqrt{3}+\sqrt{6}}{6}$.
点评 本题考查两角和与差的三角函数,二倍角公式的应用,考查计算能力.
练习册系列答案
相关题目
4.已知tanθ=$\frac{1}{2}$,则tan($\frac{π}{4}$-θ)=( )
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
14.已知抛物线C:y2=4x的焦点为F,准线为1,过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF与△AOF(其中O为坐标原点)的面积之比为3:1,则点A的坐标为( )
| A. | (2,2$\sqrt{2}$) | B. | (4,4) | C. | (4,±4) | D. | (2,±2$\sqrt{2}$) |
1.对于常数m,n,“m>0,n>0”是“方程mx2-ny2=1的曲线是双曲线”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |