题目内容
18.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{cos(\frac{3π}{2}+A)}$.(I)求C的值;
(II)若$\frac{c}{a}$=2,b=4$\sqrt{3}$,求△ABC的面积.
分析 (I)利用诱导公式,正弦定理,同角三角函数基本关系式化简已知等式可得tanC=$\frac{\sqrt{3}}{3}$,利用特殊角的三角函数值即可得解C的值.
(II)由余弦定理可求a的值,进而利用三角形面积公式即可计算得解.
解答 解:(I)∵$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{cos(\frac{3π}{2}+A)}$.
∴$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{sinA}$,由正弦定理可得:$\frac{\sqrt{3}sinC}{cosC}=\frac{sinA}{sinA}$,可得:tanC=$\frac{\sqrt{3}}{3}$,
∴C=$\frac{π}{6}$.
(II)∵C=$\frac{π}{6}$,$\frac{c}{a}$=2,b=4$\sqrt{3}$,
∴由余弦定理c2=a2+b2-2abcosC,可得:(2a)2=a2+(4$\sqrt{3}$)2-2×$a×4\sqrt{3}×\frac{\sqrt{3}}{2}$,
整理可得:a2+4a-16=0,解得:a=2$\sqrt{5}$-2,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×$(2$\sqrt{5}$-2)×$4\sqrt{3}$×$\frac{1}{2}$=2$\sqrt{15}$-2$\sqrt{3}$.
点评 本题主要考查了诱导公式,正弦定理,同角三角函数基本关系式,特殊角的三角函数值,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
8.方程sin2x+cosx+k=0有解,则实数k的取值范围为( )
| A. | $-1≤k≤\frac{5}{4}$ | B. | $-\frac{5}{4}≤k≤1$ | C. | $0≤k≤\frac{5}{4}$ | D. | $-\frac{5}{4}≤k≤0$ |
6.己知双曲线E的中心在原点,F(5,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(9,$\frac{9}{2}$),则E的方程为( )
| A. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 |
3.在空间直角坐标系中,点P(1,2,-3)关于坐标平面xOy的对称点为( )
| A. | (-1,-2,3) | B. | (-1,-2,-3) | C. | (-1,2,-3) | D. | (1,2,3) |