题目内容

如图是一个正方体的展开图,如果将它还原为正方体,那么NC、DE、AF、BM这四条线段所在的直线是异面直线的有多少对?试以其中一对为例进行证明.
考点:异面直线的判定
专题:空间位置关系与距离
分析:先把正方体的展开图再还原成正方体,利用异面直线的判定定理找出NC、DE、AF、BM中的异面直线.
解答: 解:如图所示:

把展开图再还原成正方体,由经过平面外一点和平面内一点的直线和平面内
不经过该点的直线是异面直线可得,NC、DE、AF、BM这四条线段所在直线是异面直线的有:
AF和BM,AF和NC,AF和DE,BM和NC,BM和DE,NC和DE,共6对,
比如:BM和AF是异面直线,
证明如下:
∵F点在平面BCM中,A点在平面BCM外,
直线BM不经过F点,
由异面直线的定义,得到AF和BM是异面直线.
点评:本题考查正方体的展开图还原成正方体,再利用异面直线的判定定理进行判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网