题目内容
已知函数f(x)的定义域为(-1,1),2f(x)=f(-x)+x,则f(x)= .
考点:函数解析式的求解及常用方法,函数的定义域及其求法
专题:函数的性质及应用
分析:用-x替换x得到另一关于f(x)与f(-x)的方程,和原式联立解出f(x)即可.
解答:
解:因为2f(x)=f(-x)+x①,
所以2f(-x)=f(x)-x②,
联立①②消去f(-x)得
f(x)=
.
所以2f(-x)=f(x)-x②,
联立①②消去f(-x)得
f(x)=
| x |
| 3 |
点评:此类问题一般先用-x替换原式中的x,由此得关于f(-x)与f(x)的方程组,消去f(-x),解出f(x)即可.
练习册系列答案
相关题目