题目内容

阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数.如[-2]=-2,[-1.5]=-2,[2.5]=2.求[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]的值为(  )
A、-1B、-2C、0D、1
考点:对数的运算性质
专题:函数的性质及应用
分析:根据“取整函数”的定义即可求得答案.
解答: 解:log2
1
4
=-2,-2<log2
1
3
<-1,log2
1
2
=-1,log21=0,log22=1,1<log23<2,log24=2,
由“取整函数”的定义可得,
[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
=-2-2-1+0+1+1+2=-1.
故选:A.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网