题目内容

17.已知矩阵M对应的变换将点(-5,-7)变换为(2,1),其逆矩阵M-1有特征值-1,对应的一个特征向量为$[{\begin{array}{l}1\\ 1\end{array}}]$,求矩阵M.

分析 根据矩阵的变换求得M$[\begin{array}{l}{-5}\\{-7}\end{array}]$=$[\begin{array}{l}{2}\\{1}\end{array}]$,利用矩阵的特征向量及特征值的关系,利用矩阵的乘法,即可求得M的逆矩阵,即可求得矩阵M.

解答 解:由题意可知:M$[\begin{array}{l}{-5}\\{-7}\end{array}]$=$[\begin{array}{l}{2}\\{1}\end{array}]$,
M-1$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
∴M-1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-5}\\{-7}\end{array}]$,
设M-1=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,则$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-5}\\{-7}\end{array}]$,$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
则$\left\{\begin{array}{l}{2a+b=-5}\\{2c+d=-7}\\{a+b=-1}\\{c+d=-1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-4}\\{b=3}\\{c=-6}\\{d=5}\end{array}\right.$,则M-1=$[\begin{array}{l}{-4}&{3}\\{-6}&{5}\end{array}]$,
det(M-1)=-20+18=-2,
则M=$[\begin{array}{l}{-\frac{5}{2}}&{\frac{3}{2}}\\{-3}&{2}\end{array}]$.
∴矩阵M=$[\begin{array}{l}{-\frac{5}{2}}&{\frac{3}{2}}\\{-3}&{2}\end{array}]$.

点评 本题考查矩阵及逆矩阵的求法,矩阵的乘法,矩阵的特征值及特征向量的关系,考查转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网